6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学举行了“环 保知识竞赛”,参赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和不完整的频数分布直方图如下:
分 组 |
频数 |
频率 |
49.5~59.5 |
|
0.08 |
59.5~69.5 |
|
0.12 |
69.5~79.5 |
20 |
|
79.5~89.5 |
32 |
|
89.5~100.5 |
|
a |
(1)直接写出a的值,并补全频数分布直方图.
(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?
(3)若这组被抽查的学生成绩的中位数是80分,请直接写出被抽查的学生中得分为80分的至少有多少人?
如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.
(1)求抛物线的解析式.
(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.
注:二次函数(≠0)的对称轴是直线=
顶点在网格交点的多边形叫做格点多边形,如图,在一个9 X 9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为l个单位长度.
(1)在网格中画出△ABC向上平移4个单位后得到的△AlBlCl.
(2)在网格中画出△ABC绕点A逆时针旋转900后得到的△AB2C2
(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.
先化简,再求值: ,其中a=sin30°,b=tan45°
因式分【解析】
【注:此题只有黑河卷有】
如图,在平面直角坐标系中有一边长为l的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OBl为边作第三个正方形OBlB2C2,照此规律作下去,则点B2012的坐标为