联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.
⑴如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?
⑵如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?
如图,AB是⊙O的直径,点C在BA的延长线上,CA=AO,点D在⊙O上,∠ABD=30°.
⑴求证:CD是⊙O的切线;
⑵若点P在直线AB上,⊙P与⊙O外切于点B,与直线CD相切于点E,设⊙O与⊙P的半径分别为r与R,求的值.
已知抛物线y=ax2+bx+c过点A(0,2)、B(,),且点B关于原点的对称点C也在该抛物线上.
⑴求a、b、c的值;
⑵①这条抛物线上纵坐标为的点共有 个;
②请写出: 函数值y随着x的增大而增大的x的一个范围 .
已知:ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD, A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).
⑴求证:四边形ABCD是矩形;
⑵在四边形ABCD中,求的值.
如图,在一张圆桌(圆心为点O)的正上方点A处吊着一盏照明灯,实践证明:桌子边沿处的光的亮度与灯距离桌面的高度AO有关,且当sin∠ABO=时,桌子边沿处点B的光的亮度最大,设OB=60cm,求此时灯距离桌面的高度OA(结果精确到1cm).
(参考数据:≈1.414;≈1.732;≈2.236)
三明中学初三(1)班篮球队有10名队员,在一次投篮训练中,这10名队员各投篮50次的进球情况如下表:
进球数 |
42 |
32 |
26 |
20 |
19 |
18 |
15 |
14 |
人数 |
1 |
1 |
1 |
1 |
2 |
1 |
2 |
1 |
针对这次训练,请解答下列问题:
(1)求这10名队员进球数的平均数、中位数和众数;
(2)求这支球队整体投篮命中率;(投篮命中率=×100%)
(3)若队员小华的投篮命中率为40%,请你分析一下小华在这支球队中的投篮水平.