解分式方程,可知方程( )
A.解为 B.解为 C.解为 D.无解
代数式的值为9,则的值为( )
A. B. C. D.
化简的结果是( )
A. B. C. D.
已知圆P的圆心在反比例函数图象上,并与x轴相交于A、B两点. 且始终与y轴相切于定点C(0,1).
(1)求经过A、B、C三点的二次函数图象的解析式;
(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形.
阅读以下材料,并解答以下问题.
“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N= m + n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法, 这就是分步乘法计数原理. ”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走), 会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.
(1)根据以上原理和图2的提示, 算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?
(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?
(3) 现由于交叉点C道路施工,禁止通行. 求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?
一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.
(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,其中R、r分别为大圆和小圆的半径;
(2)若L=160m,r=10m,求使图2面积为最大时的θ值.