如图①,在Rt△ABC中,∠BAC=90°,AB=AC=,D、E两点分别在AC、BC上,且DE∥AB,CD=.将△CDE绕点C顺时针旋转,得到△CD’E’(如图②,点D’、E’分别与点D、E对应),点E’在AB上,D’E’与AC相交于点M.
(1)求∠ACE’的度数;
(2)求证:四边形ABCD’是梯形;
(3)求△AD’M的面积.
某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台.假设这种品牌的彩电每台降价100x(x为正整数)元,每天可多售出3x台.(注:利润=销售价-进价)
(1)设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式;
(2)销售该品牌彩电每天获得的最大利润是多少?此时,每台彩电的销售价是多少时,彩电的销售量和营业额均较高?
某市图书馆的自然科学、文学艺术、生活百科和金融经济四类图书比较受读者的欢迎.为了更好地为读者服务,该市图书馆决定近期添置这四方面的图书,为此图书管理员对2007年5月份四类图书的借阅情况进行了统计,得到了四类图书借阅情况的频数表.
图书种类 |
自然科学 |
文学艺术 |
生活百科 |
金融经济 |
频数(借阅人数) |
2000 |
2400 |
1600 |
2000 |
请你根据表中提供的信息,解答以下问题:
(1)填空:表中数据的极差是______________;
(2)请在下边的圆中用扇形统计图表示四类图书的借阅情况;
(3)如果该市图书馆要添置这四类图书10000册,请你估算“文学艺术”类图书应添置多少册较合适?
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
某商场门前的台阶截面如图所示.已知每级台阶的宽度(如CD)均为30cm,高度(如BE)均为20cm.为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9°.请计算从斜坡起点A到台阶前的点B的水平距离.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)
周华早起锻炼,往返于家与体育场之间,离家的距离y(米)与时间x(分)的关系如图所示.回答下列问题:
(1)填空:周华从体育场返回行走的行走速度时___________米/分;
(2)刘明与周华同时出发,按相同的路线前往体育场,刘明离周华家的距离y(米)与时间x(分)的关系式为y=kx+400,当周华回到家时,刘明刚好到达体育场.
①直接在图中画出刘明离周华家的距离y(米)与时间x(分)的函数图象;
②填空:周华与刘明在途中共相遇___________次;
③求周华出发后经过多少分钟与刘明最后一次相遇.