抛掷一枚硬币,正面向上的概率为( )
如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:
|
A |
B |
进价(元/件) |
1200 |
1000 |
售价(元/件) |
1380 |
1200 |
(注:获利=售价-进价)
(1) 该商场购进A、B两种商品各多少件?
(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?
如图,ABCD是边长为1的正方形,其中、、的圆心依次是点A、B、C.
(1)求点D沿三条圆弧运动到G所经过的路线长;
(2)判断直线GB与DF的位置关系,并说明理由.
张彬 和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:
张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到了入场券;否则,王华得到入场券;
王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.
请你运用所学的概率知识,分析张彬和王华 的设计方案对双方是否公平.
如图1,点将线段分成两部分,如果,那么称点为线段的黄金分割点.
某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为的图形分成两部分,这两部分的面积分别为,,如果,那么称直线为该图形的黄金分割线.
(1)研究小组猜想:在中,若点为边上的黄金分割点(如图2),则直线是的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点任作一条直线交于点,再过点作直线,交于点,连接(如图3),则直线也是的黄金分割线.
请你说明理由.
(4)如图4,点是的边的黄金分割点,过点作,交于点,显然直线是的黄金分割线.请你画一条的黄金分割线,使它不经过各边黄金分割点.