一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:
信息读取:
(1)甲、乙两地之间的距离为km;
(2)请解释图中点B的实际意义;
图象理【解析】
(3)求慢车和快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
问题解决:
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q.A,B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动.设运动时间为ts.
(1)求PQ的长;
(2)当t为何值时,直线AB与⊙O相切?
已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
(1)求该二次函数的关系式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.
某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?
小明和小颖做掷骰子的游戏,规则如下:
①游戏前,每人选一个数字;
②每次同时掷两枚均匀骰子;
③如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.
(1)在下表中列出同时掷两枚均匀骰子所有可能出现的结果:
(2)小明选的数字是5,小颖选的数字是8.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大请说明理由.
如图,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,求此人距CD的水平距离AB.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin23°≈0.391,cos23°≈0.921,tan23°≈0.424)