如图,在平面直角坐标系中放置一直角三角板,其顶点为,,,将此三角板绕原点顺时针旋转,得到.
(1)如图,一抛物线经过点,求该抛物线解析式;
(2)设点是在第一象限内抛物线上一动点,求使四边形的面积达到最大时点的坐标及面积的最大值.
如图,在中,斜边,为的中点,的外接圆与交于点,过作的切线交的延长线于点.
(1)求证:;
(2)计算:的值.
“六一”儿童节,小明与小亮受邀到科技馆担任义务讲解员,他们俩各自独立从A区(时代辉煌)、B区(科学启迪)、C区(智慧之光)、D区(儿童世界)这四个主题展区中随机选择一个为参观者服务.
(1)请用列表法或画树状图法说明当天小明与小亮出现在各主题展区担任义务讲解员的所有可能情况.(用字母表示)
(2)求小明与小亮只单独出现在B区(科学启迪)、C区(智慧之光)、D区(儿童世界)三个主题展区中担任义务讲解员的概率.
如图,在梯形中,,.求的长.
某县政府打算用25000元用于为某乡福利院购买每台价格为2000元的彩电和每台价格为1800元的冰箱,并计划恰好全部用完此款.
(1)问原计划所购买的彩电和冰箱各多少台?
(2)由于国家出台“家电下乡”惠农政策,该县政府购买的彩电和冰箱可获得13%的财政补贴,若在不增加县政府实际负担的情况下,能否多购买两台冰箱?谈谈你的想法.
芜湖市1985年~2008年各年度专利数一览表
(1)请你根据以上专利数数据,求出该组数据的中位数为 ;极差为 ;
(2)请用折线图描述2001年~2008年各年度的专利数.
(3)请你根据这组数据,说出你得到的信息.