下列运算正确是( ).
A. B. C. D.
如图,直线分别交轴,轴于两点,以为边作矩形,为的中点.以,为斜边端点作等腰直角三角形,点在第一象限,设矩形与重叠部分的面积为.
(1)求点的坐标;
(2)当值由小到大变化时,求与的函数关系式;
(3)若在直线上存在点,使等于,求出的取值范围;
(4)在值的变化过程中,若为等腰三角形,请直接写出所有符合条件的值.
已知某种水果的批发单价与批发量的函数关系如图(1)所示.
(1)请说明图中①、②两段函数图象的实际意义;
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
已知:如图,正比例函数的图象与反比例函数的图象交于点
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?
(3)是反比例函数图象上的一动点,其中过点作直线 轴,交轴于点;过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.
如图所示,已知:中,.
(1)尺规作图:作的平分线交于点(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将沿某条直线折叠,使点与点重合,折痕 交于点,交于点,连接,再展回到原图形,得到四边形.
①试判断四边形AEDF的形状,并证明;
②若AC=8,CD=4,求四边形AEDF的周长和BD的长.
如图所示,、两城市相距,现计划在这两座城市间修建一条高速公路(即线段),经测量,森林保护中心在城市的北偏东和城市的北偏西的方向上,已知森林保护区的范围在以点为圆心,为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:)