如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且将三角板绕点逆时针旋转至的位置,连结
(1)求证:
(2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由.
学校计划用地面砖铺设教学楼前矩形广场的地面已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.
(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?
(2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元.当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?
路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)
某中学的高中部在校区,初中部在校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知校区的每位高中学生往返车费是6元,每人每天可栽植5棵树;校区的每位初中学生往返车费是10元,每人每天可栽植3棵树.要求初高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不得超过210元.要使本次活动植树最多,初高中各有多少学生参加?最多植树多少棵?
如图,是的直径,是上的两点,且
(1)求证:
(2)若将四边形分成面积相等的两个三角形,试确定四边形的形状.
2010年5月1日至20日的20天里,每天参观上海世博会的人数统计如下:(单位:万人次)
20,22,13,15,11,11,14,20,14,16,
18,18,22,24,34,24,24,26,29,30.
(1)写出以上20个数据的众数、中位数、平均数;
(2)若按照前20天参观人数的平均数计算,估计上海世博会期间(2010年5月1日至2010年10月31日)参观的总人数约是多少万人次?
(3)要达到组委会预计的参观上海世博会的总人数约为7000万人次,2010年5月21日至2010年10月31日期间,平均每天参观人数约为多少万人次?(结果精确到0.01万人次)