满分5 > 初中数学试题 >

如图,△ABC中,∠ACB=90º,AC=BC=1,将△ABC绕点C逆时针旋转角...

如图,△ABC中,∠ACB=90º,AC=BC=1,将△ABC绕点C逆时针旋转角α。(0º<α<90º)得到△A1B1C1,连结BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F。

6ec8aac122bd4f6e

(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C1全等除外);

(2)当△BB1D是等腰三角形时,求α;

(3)当α=60º时,求BD的长。

 

【解析】 (1)全等的三角形有: 等。(只需写一个即可) 以证为例: 证明: (2)在△CBB1中,∵CB=CB1, 又△ABC是等腰直角三角形,∴∠ABC=45°       ①若,则∠B1DB=∠B1BD,∵∠B1DB=45°+α (舍去) ②,即BD≠B1D      ③若BB1=BD,则,即   由①②③可知,当△BB1D为等腰三角形时,α=30°       (3)作DG⊥BC于G,设CG=x 在Rt△CDG中, 在Rt△DGB中,         【解析】(1)依据全等三角形的判定,可找出全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF等.由旋转的意义可证∠A1CF=∠BCD,A1C=BC,∠A1=∠CBD=45°,所以△CBD≌△CA1F. (2)当△BBD是等腰三角形时,要分别讨论B1B=B1D、BB1=BD、B1D=DB三种情况,第一,三种情况不成立,只有第二种情况成立,求得α=30°. (3)作DG⊥BC于G,在直角三角形CDG和直角三角形DGB中,由三角函数即可求得BD的长.
复制答案
考点分析:
相关试题推荐

一商场计划到计算器生产厂家购进一批A、B两种型号的计算器。经过商谈,A型计算器单价为50元,100只起售,超过100只的超过部分,每只优惠20%;B型计算器单价为22元,150只起售,超过l50只的超过部分,每只优惠2元。如果商家计划购进计算器的总量既不少于700只,又不多于800只,且分别用于购买A、B这两种型号的计算器的金额相等,那么该商场至少需要准备多少资金?

 

查看答案

姚明是我国著名的篮球运动员,他在2005-2006赛季NBA常规赛中表现非常优异。下面是他在这个赛季中,分期与“超音速队”和“快船队”各四场比赛中的技术统计。

场次

对阵超音速

对阵快船

得分

篮板

失误

得分

篮板

失误

第一场

22

10

2

25

17

2

第二场

29

10

2

29

15

0

第三场

24

14

2

17

12

4

第四场

26

10

5

22

7

2

(1)请分别计算姚明在对阵“超音速”和“快船”两队的各四场比赛中,平均每场得多少分?

(2)请你从得分的角度分析,姚明在与“超音速”和“快船”的比赛中,对阵哪一个队的发挥更稳定?

(3)如果规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5十平均每场失误×(-1.5),且综合得分越高表现越好,那么请你利用这种评价方法,来比较姚明在分别与“超音速”和“快船”的各四场比赛中,对阵哪一个队表现更好?

 

查看答案

(1)如图1,己知△ABC中,AB>AC。试用直尺(不带刻度)和圆规在图l中过点A作一条直线l,使点C关于直线l的对称点在边AB上(不要求写作法,也不必说明理由,但要保留作图痕迹)。

(2)如图2,己知格点△ABC,请在图2中分别画出与△ABC相似的格点△A1B1C1和格点△A2B2C2,并使△AlBlCl与△ABC的相似比等于2,而A2B2C2与△ABC的相似比等于6ec8aac122bd4f6e。(说明:顶点都在网格线交点处的三角形叫做格点三角形。友情提示:请在画出的三角形的项点处标上相对应的字母!)

6ec8aac122bd4f6e

 

查看答案

甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”。最后两人商定,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁先买。若甲赢,则乙买;若乙赢,则甲买。具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”。

请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平?

 

查看答案

已知:如图,6ec8aac122bd4f6eABCD中,∠BCD的平分线交AB于E,交DA的延长线于F。求证:AE=AF。

 

6ec8aac122bd4f6e

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.