如图正方形的面积为4,点为坐标原点,点在函数(,)的图象上,点是函数的图象上异于的任意一点,过点分别作轴,轴的垂线,垂足分别为.
(1)设矩形的面积为,判断与点的位置是否有关(不必说理由).
(2)从矩形的面积中减去其与正方形重合的面积,剩余面积记为,写出与的函数关系,并标明的取值范围.
图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为
如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,,求图4中所有圆圈中各数的绝对值之和.
某商场搞摸奖促销活动:商场在一只不透明的箱子里放了三个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样.规定:顾客在本商场同一日内,每消费满100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品.现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率.
如图是甲、乙两人在一次射击比赛中击中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数)每人射击了6次.
(1)请用列表法将他俩的射击成绩统计出来;
(2)请你用学过的统计知识,对他俩的这次射击情况进行比较.
如图,AB是,
如图,已知四边形ABCD是菱形,点E,F分别是边CD,AD的中点.求证:AE=CF.