如图,ABCD是正方形,G是BC上的一点,于E,于F。猜想DE、EF、FB之间的数量关系,并对你的猜想加以证明。
下列函数中,自变量x的取值范围为的是( )
A. B. C. D.
如图,在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程的两个根,且OA>OB.
(1)求sin∠ABC的值.
(2)若E为x轴上的点,且,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.
某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台. 经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:
型 号 |
A型 |
B型 |
成本(元/台) |
2200 |
2600 |
售价(元/台) |
2800 |
3000 |
(1)冰箱厂有哪几种生产方案?
(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?
(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学。其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证.当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,,,又有怎样的数量关系?请写出你的猜想,不需证明.
甲乙两车同时从A地前往B地. 甲车先到达B地,停留半小时后按原路返回. 乙车的行驶速度为每小时60千米. 下图是两车离出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.
(1)请直接写出A、B两地的距离与甲车从A到B的行驶速度.
(2)求甲车返回途中y与x的函数关系式,并写出自变量x的取值范围.
(3)两车相遇后多长时间乙车到达B地?