【解析】
(1)△AFB∽△FEC.
证明:由题意得:∠AFE=∠D=90° 又∠B=∠C=90°
∴∠BAF+∠AFB=90° , ∠EFC+∠AFB=90°
∴∠BAF=∠EFC ∴ AFB∽△FEC
(2)设EC=3x,FC=4x,则有DE=EF=5x ,∴AB=CD=3x+ 5x=8x
由△AFB∽△FEC得: 即: = ∴BF=6x ∴BC=BF-CF=6x+ 4x= 10x
∴在Rt△ADE中,AD=BC=10x,AE=,则有
解得(舍去) ∴AB+BC+CD+DA=36x=36(cm) 答:矩形ABCD的周长为36cm.
【解析】(1)由四边形BCD是矩形,可得∠AFE=∠D=90°,又由同角的余角相等,可得∠BAF=∠EFC,即可证得:△AFB∽△FEC;
(2)由Rt△FEC中,tan∠EFC=,可得,则可设CE=3k,则CF=4k,由勾股定理得EF=DE=5k.继而求得BF与BC,则可求得k的值,由矩形ABCD的周长=2(AB+BC)求得结果.