下列各数(-2)0 , - (-2), (-2)2, (-2)3中, 负数的个数为 ( )
A.1 B. 2 C. 3 D. 4
如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC(AB>AE).
(1)△AEF与△EFC是否相似?若相似,证明你的结论;若不相似,请说明理由;
(2)设=k,是否存在这样的k值,使得△AEF与△BFC相似,若存在,证明你的结论并求出k的值;若不存在,说明理由.
(1)操作发现:
如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.
(2)类比探究:
如图,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.
通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边/腰=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°= .
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是 .
(3)如图②,已知sinA=,其中∠A为锐角,试求sadA的值.
如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦与小半圆N相切于点F,且AB∥CD,AB=4,设、的长分别为x、y,线段ED的长为z,则z(x+y)的值为 .
2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.
(1)分别求和的函数解析式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.