满分5 > 初中数学试题 >

如图,已知反比例函数y=过点P, P点的坐标为(3-m,2m),m是分式方程的解...

如图,已知反比例函数y=6ec8aac122bd4f6e过点P, P点的坐标为(3-m,2m),m是分式方程6ec8aac122bd4f6e的解,PA⊥x轴于点A,PB⊥y轴于点B.

(1)试判断四边形PAOB的形状,并说明理由.

6ec8aac122bd4f6e

(2)连结AB,E为AB上的一点,EF⊥BP于点F,G为AE的中点,连结OG、FG,试问FG和OG有何数量关系?请写出你的结论并证明.

6ec8aac122bd4f6e

(3)若M为反比例函数y=6ec8aac122bd4f6e在第三象限内的一动点,过M作MN⊥x轴于交AB的延长线于点N,是否存在一点M使得四边形OMNB为等腰梯形?若存在,请求出M点的坐标;若不存在,请说明理由.

6ec8aac122bd4f6e

 

【解析】 (1)四边形PAOB是正方形.理由如下    ∵∠AOB=∠OBP=∠OAP=90°    ∴四边形PAOB是矩形                                            m-3+m-2=-3      解得:m=1    经检验知m=1是原分式方程的解    ∴P(2,2)                                   ∴PB=PA=2    ∴四边形PAOB是正方形.  (2)OG=FG.证明如下:    延长FE交OA于点H,连结GH ∵∠HFB =∠FBO=∠BOH=90° ∴BOHF是矩形 ∴BF=OH ∵∠FBE=∠FEB=45° ∴EF= BF=OH                    ∵∠EHA=90°,G为AE的中点 ∴GH=GE=GA                                    ∴∠GEH=∠GAH=45°   ∴∠GEF=∠GHO                          ∴△GEF≌△GHO   ∴OG=FG                                         (3)由题意知:∠BNM=45°              ∵要让四边形OBNM为等腰梯形 ∴∠BNM=∠NMO=45°                                                 ∴设M点的坐标为(x,x),代入 ∴x=±2 ∵M是第三象限上一动点 ∴x=-2 ∴M点的坐标为(-2,-2)                                  【解析】(1)解出分式方程得到m的值,进而可判断出四边形PAOB的形状; (2)应猜想相等,找这两条线段所在三角形全等的条件; (3)易知∠BNM=45°,要想为等腰梯形,∠OMN=45°,那么点M的横纵坐标相等.代入反比例函数即可.
复制答案
考点分析:
相关试题推荐

已知:如图,梯形ABCD中,AD∥BC,∠ABC=90°.

(1)如图1,若AC⊥BD,且AC=5,BD=3,则S梯形ABCD                

(2)如图2,若DE⊥BC于E,BD=BC,F是CD的中点,试问:∠BAF与∠BCD的大小关系如何?请写出你的结论并加以证明;

6ec8aac122bd4f6e

(3)在(2)的条件下,若AD=EC,6ec8aac122bd4f6e      .

 

查看答案

一司机驾驶汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.

(1)当他按原路匀速返回时,求汽车速度v(千米/小时)与时间t(小时)之间的函数关系式;

(2)如果该司机匀速返回时,用了4.8小时,求返回时的速度;

(3)若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过每小时120公里,最低车速不得低于每小时60公里,试问返程时间的范围是多少?

 

查看答案

如图,ABCD为平行四边形,AD=2,BE∥AC,DE交AC的延长线于F点,交BE于E点.

6ec8aac122bd4f6e

(1)求证:EF=DF;

(2)若AC=2CF,∠ADC=60 o, AC⊥DC,求DE的长.

 

查看答案

如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是

6ec8aac122bd4f6e

A.AB=CD            B.AD=BC           C.AB=BC         D.AC=BD

 

查看答案

如图,身高1.6m的学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0m,BC=8.0m,则旗杆的高度是

6ec8aac122bd4f6e

A.6.4m          B.7.0m          C.8.0m           D.9.0m

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.