满分5 > 初中数学试题 >

如图1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.动点P在线...

如图1,在Rt△AOB中,∠AOB=90°,AO=6ec8aac122bd4f6e,∠ABO=30°.动点P在线段AB上从点A向终点B以每秒6ec8aac122bd4f6e个单位的速度运动,设运动时间为t秒.在直线OB 上取两点M、N作等边△PMN.

(1)求当等边△PMN的顶点M运动到与点O重合时t的值.

(2)求等边△PMN的边长(用t的代数式表示);

(3)如果取OB的中点D,以OD为边在Rt△AOB 内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.

(4)在(3)中,设PN与EC的交点为R,是否存在点R,使△ODR是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.

6ec8aac122bd4f6e

 

【解析】 (1)当等边△PMN的顶点M运动到与点O重合时, MP⊥AB,∵∠A=60°,∴AP=4,∴。(2分) (2)∵AP=,∴BP= 又∵∠B=30°,∠PMB=600°,∴∠BPM=90° tan∠B= ∴,即等边△PMN的边长为.(4分) (3)①当时,如图AP=,∴ ∴,∴, ∴. 过F作FQ⊥0B于Q,则QN=4,∴EF=OQ=. 等边△PMN和矩形ODCE重叠部分的面积为四边形EFNO的面积,设为S1, ∴ ∵>0,∴S1随t的增大而增大, ∴t=1时,,∴S1的最大值为.(7分) ②当<t<2时,如图 在△EGK中,GE=,∴EK=, ∴S△GEK=. ∴等边△PMN和矩形ODCE重叠部分的面积为四边形EFNO的面积与△EGK的面积差,设为S2, ∴. ∵,对称轴为, ∴时,的最大值为.(9分) 当时,。 综上可知:当时,S的最大值为.(10分) (4)过R作RH⊥OB于H,RH=,HN=4, OH=,OD=12,DH=, ①OR=OD=12时,, ∴,,∴>2,不合题意舍去。 ②DR=OD=12时,, ∴,∴>2,或<0,都不合题意舍去。 ③OR=DR时,H为CD中点,OH=6,∴,∴。 综上所述,时,△ODR是等腰三角形。(12分) 【解析】(1)利用直角三角形中30°所对的边是斜边的一半即可求出AP,进而求出t的值; (2)利用△BPH∽△BAO,得出PH的长,再利用解直角三角形求出PN的长; (3)根据当0≤t≤1时以及当t=1时和当t=2时,分别求出S的值; (4)根据当D为顶点,OD=OR1=6时,当R2为顶点,OR2=DR2时,③当O为等腰△的顶点时,分别得出即可
复制答案
考点分析:
相关试题推荐

巴南区为了贯彻落实“森林重庆”,深入开展“绿化长江—重庆行动”。现决定对本区培育种植树苗的农民实施政府补贴,规定每种植一亩树苗一次性补贴农民若干元,随着补贴数额的不断增大,生产规模也不断增加,但每亩树苗的收益会相应降低。经调查,种植亩数y(亩)、每亩树苗的收益z(元)与补贴树额x(元)之间的一次函数关系如下表:

6ec8aac122bd4f6e

(1)分别求出政府补贴政策实施后种植亩数y、每亩树苗的收益z与政府补贴数额x之间的函数关系式;

(2)要使我区种植树苗的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值和此时种植的亩数;(总收益=种植亩数6ec8aac122bd4f6e每亩树苗的收益)

(3)在取得最大收益的情况下,经市场调查,培育种植水果类树苗经济效益更好,今年该地区决定用种植树苗总面积m﹪的土地种植水果类树苗,因环境和经济等因素的制约,种植水果类树苗的面积不超过300亩 .经测算,种植水果类树苗需用的支架、塑料膜等材料每亩费用为2700元,此外还需购置喷灌设备,这项费用(元)与种植水果类树苗面积(亩)的平方成正比例,比例系数为9.预计今年种植水果类树苗后的这部分土地的收益比没种植前的收益每亩增加了7500元,这样,该地区今年因种植水果类树苗而增加的收益(扣除材料费和设备费后)共570000元.求m的值.

(结果精确到个位,参考数据:6ec8aac122bd4f6e6ec8aac122bd4f6e

 

查看答案

如图,在梯形ABCD中, AB∥DC,∠BCD=90°,且AB=1,BC=2,

tan∠ADC=2.

⑴求证:DC=BC;

⑵E是梯形内的一点,F是梯形外的一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;⑶在⑵的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

6ec8aac122bd4f6e

 

查看答案

为了了解全善学校初一、初二年级1500名学生对学校设置的象棋、体操,篮球、合唱、跑步等课外活动的喜爱情况,在初一初二的学生中随机抽取了若干名学生,对他们喜爱的课外活动(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整)

6ec8aac122bd4f6e

(1)在这次问卷调查中,一共抽查了       名学生;

(2)补全频数分布直方图;

(3)估计两个年级的1500名学生中有         人喜爱篮球运动。

(4)若被随机调查的学生中喜欢合唱的有3名女生,被随机调查的学生中喜欢象棋的有2名男生。现要从随机调查的学生中喜欢合唱的同学和随机调查的学生中喜欢象棋的同学中分别选出一位参加该学校组织的课外活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率。

 

查看答案

如图,已知:6ec8aac122bd4f6e,求证:AB∥CD。

 

6ec8aac122bd4f6e

 

 

查看答案

如图,AD是∠EAC的平分线,AD∥BC,∠B=30o,∠EAD、∠DAC、∠C的度数。

6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.