如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为xm,面积为Sm2.
(1)求S与x的函数关系式;
(2)如果要围成面积为45m2的花圃,AB的长是多少米?
(3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
已知二次函数y=-x2+4x+5,完成下列各题:
(1)将函数关系式用配方法化为的形式,并写出它的顶点坐标、对称轴.
(2)求出它的图象与坐标轴的交点坐标.
(3)在直角坐标系中,画出它的图象.
(4)根据图象说明:当x为何值时,y>0;当x为何值时,y<0.
如图,某学生推铅球,铅球出手(点A处)的高度是0.6m,出手后的铅球沿一段抛物线运行,当运行到最高3m时,水平距离x=4m.
(1)求这个二次函数的解析式; (2)该男同学把铅球推出去多远?
某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现, 在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?
(2)若商场只要求保证每天的盈利为6000元,同时又可使顾客得到实惠,每千克应涨价为多少元?
如图,隧道的横截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的解析式为。
(1)一辆货运车车高4m,宽2m,它能通过该隧道吗?
(2)如果该隧道内设双行道,中间遇车间隙为0.4m,那么这辆卡车是否可以通过?
求证:m取任何实数时,抛物线的图象与x轴必有两个交点.