数据1,1,2,2,3,3,3的极差是
A、 1 B、 2 C、 3 D、 6
若有意义,则m能取的最小整数是
A、m=0 B、m=l C、m=2 D、m=3
使两个直角三角形全等的条件
A、一锐角对应相等
B、两锐角对应相等
C、一条边对应相等
D、两条边对应相等
等腰三角形一底角为50°,则顶角的度数是
A、 65 B、 70 C、 80 D、 40
如图10,在平面直角坐标系中,正方形OABC边长是4,点A、C分别在y轴、x轴的正半轴上.动点P从点A开始,以每秒2个单位长度的速度在线段AB上来回运动.动点Q从点B开始沿B→C→O的方向,以每秒1个单位长度的速度向点O运动.P、Q两点同时出发,当点Q到达点O时,P、Q两点同时停止运动.设运动时间为t,△OPQ的面积为S.
(1)当t =1时,S = ;
(2)当0≤ t ≤ 2时,求满足△BPQ的面积有最大值的P、Q两点坐标;
(3)在P、Q两点运动的过程中,是否存在某一时刻,使得S = 6.若存在,请直接写出所有符合条件的P点坐标;若不存在,请说明理由.
如图8,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.
(1)求证:DE=DC.
(2)如图9,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC的延长线于点G.试探究线段DF、DG的数量关系.