满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别...

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以6ec8aac122bd4f6ecm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).

6ec8aac122bd4f6e

(1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).

(2)当点N落在AB边上时,求t的值.

(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式.

(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.

 

(1)t-2(2)t=4或t=(3)(4)t=或t=5或 6≤t≤8。 【解析】【解析】 (1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=。 综上所述,当点N落在AB边上时,t=4或t=。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况: ①当2<t<4时,如图(3)a所示。 DP=t-2,PQ=2,∴CQ=PE=DE-DP=4-(t-2)=6-t,AQ=AC-CQ=2+t,AM=AQ-MQ=t。 ∵MN∥BC,∴△AFM∽△ABC。∴FM:BC = AM:AC=1:2,即FM:AM=BC:AC=1:2。 ∴FM=AM=t.  ∴  。 ②当<t<8时,如图(3)b所示。 PE=t-6,∴PC=CM=PE+CE=t-4,AM=AC-CM=12-t,PB=BE-PE=8-t, ∴FM=AM=6-t,PG=2PB=16-2t, ∴  。 综上所述,S与t的关系式为:。 (4)在点P的整个运动过程中,点H落在线段CD上时t的取值范围是:t=或t=5或 6≤t≤8。 (1)∵在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,∴由勾股定理得AB=cm。       ∵D为边AB的中点,∴AD=cm。     又∵点P在AD上以cm/s的速度运动,∴点P在AD上运动的时间为2s。    ∴当点P在线段DE上运动时,在线段DP上的运动的时间为t-2s。   又∵点P在DE上以1cm/s的速度运动,∴线段DP的长为t-2 cm。 (2)当点N落在AB边上时,有两种情况,如图(2)所示,利用运动线段之间的数量关系求出时间t的值。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况,如图(3)所示,分别用时间t表示各相关运动线段的长度,然后利用求出面积S的表达式。 (4)本问涉及双点的运动,首先需要正确理解题意,然后弄清点H、点P的运动过程: 依题意,点H与点P的运动分为两个阶段,如下图所示: ①当4<t<6时,此时点P在线段DE上运动,如图(4)a所示。 此阶段点P运动时间为2s,因此点H运动距离为2.5×2=5cm,而MN=2, 则此阶段中,点H将有两次机会落在线段CD上: 第一次:此时点H由M→H运动时间为(t-4)s,运动距离MH=2.5(t-4), ∴NH=2-MH=12-2.5t。 又DP=t-2,DN=DP-2=t-4, 由DN=2NH得到:t-4=2(12-2.5t),解得t=。 第二次:此时点H由N→H运动时间为t-4-=(t-4.8)s,运动距离NH=2.5(t-4.8)=2.5t-12, 又DP=t-2,DN=DP-2=t-4, 由DN=2NH得到:t-4=2(2.5t-12),解得t=5。 ②当6≤t≤8时,此时点P在线段EB上运动,如图(4)b所示。 由图可知,在此阶段,始终有MH=MC,即MN与CD的交点始终为线段MN的中点,即点H。 综上所述,在点P的整个运动过程中,点H落在线段CD上时t的取值范围是:t=或t=5或6≤t≤8。
复制答案
考点分析:
相关试题推荐

如图,在平面直角坐标系中,直线y=-2x+42交x轴与点A,交直线y=x于点B,抛物线6ec8aac122bd4f6e分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上.

6ec8aac122bd4f6e

(1)求点C、D的纵坐标.

(2)求a、c的值.

(3)若Q为线段OB上一点,且P、Q两点的纵坐标都为5,求线段PQ的长.

(4)若Q为线段OB或线段AB上的一点,PQ⊥x轴,设P、Q两点之间的距离为d(d>0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围.

(参考公式:二次函数6ec8aac122bd4f6e图像的顶点坐标为6ec8aac122bd4f6e

 

查看答案

感知:如图①,点E在正方形ABCD的BC边上,BF⊥AE于点F,DG⊥AE于点G.可知△ADG≌△BAF.(不要求证明)

6ec8aac122bd4f6e

拓展:如图②,点B、C在∠MAN的边AM、AN上,点E, F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.

应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边B上.CD=2BD.点E,  F在线段AD上.∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为_________.

 

查看答案

某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.

6ec8aac122bd4f6e

(1)求工人一天加工费不超过20个时每个零件的加工费.

(2)求40≤x≤60时y与x的函数关系式.

(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王第一天加工的零件不足20个,求小王第一天加工零件的个数.

 

查看答案

如图,在平面直角坐标系中,6ec8aac122bd4f6eOABC的顶点A, C的坐标分别为A(2,0),C(-1,2),反比例函数6ec8aac122bd4f6e的图像经过点B.

6ec8aac122bd4f6e

(1)求k的值.

(2)将6ec8aac122bd4f6eOABC沿着x轴翻折,点C落在点C′处.判断点C′是否在反比例函数6ec8aac122bd4f6e的图像上,请通过计算说明理由.

 

查看答案

图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个四边形ABCD.

要求:四边形ABCD的顶点D在格点上,且有两个角相等(一组或两组角相等均可);所画的两个四边形不全等.

6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.