﹣9的相反数是【 】
A.9 B.﹣9 C. D.﹣
已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒 ;设,当t 为何值时,s有最小值,并求出最小值。
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由。
.某私营服装厂根据2011年市场分析,决定2012年调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件。已知每件服装的收入和所需工时如下表:
服装名称 |
西服 |
休闲服 |
衬衣 |
工时/件 |
|||
收入(百元)/件 |
3 |
2 |
1 |
设每周制作西服x件,休闲服y件,衬衣z件。
(1)请你分别从件数和工时数两个方面用含有x,y 的代数式表示衬衣的件数z,
(2)求y与x之间的函数关系式。
(3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?
在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是 。
若关于x的不等式组的解集为x<2,则a的取值范围是 .
如图,ABCD 中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,sin∠BAE=,则CF= .