满分5 > 初中数学试题 >

如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两...

如图,一次函数6ec8aac122bd4f6e分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.

6ec8aac122bd4f6e

(1)求这个抛物线的解析式;

(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?

(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

 

(1)y=﹣x2+x+2(2)当t=2时,MN有最大值4(3)D点坐标为(0,6),(0,﹣2)或(4,4) 【解析】【解析】 (1)∵分别交y轴、x轴于A、B两点, ∴A、B点的坐标为:A(0,2),B(4,0)。 将x=0,y=2代入y=﹣x2+bx+c得c=2; 将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=。 ∴抛物线解析式为:y=﹣x2+x+2。 (2)如图1, 设MN交x轴于点E,则E(t,0),BE=4﹣t。 ∵, ∴ME=BE•tan∠ABO=(4﹣t)× =2﹣t。 又∵N点在抛物线上,且xN=t,∴yN=﹣t2+t+2。 ∴。 ∴当t=2时,MN有最大值4。 (3)由(2)可知,A(0,2),M(2,1),N(2,5). 如图2, 以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形。 (i)当D在y轴上时,设D的坐标为(0,a), 由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2, 从而D为(0,6)或D(0,﹣2)。 (ii)当D不在y轴上时,由图可知D为D1N与D2M的交点, 由D1(0,6),N(2,5)易得D1N的方程为y=x+6; 由D2(0,﹣2),M(2,1)D2M的方程为y=x﹣2。 由两方程联立解得D为(4,4)。 综上所述,所求的D点坐标为(0,6),(0,﹣2)或(4,4)。 (1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式。 (2)求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值。 (3)明确D点的可能位置有三种情形,如图2所示,不要遗漏.其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标。
复制答案
考点分析:
相关试题推荐

如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.

6ec8aac122bd4f6e

(1)当t为何值时,∠AMN=∠ANM?

(2)当t为何值时,△AMN的面积最大?并求出这个最大值.

 

查看答案

如图,已知AD为⊙O的直径,B为AD延长线上一点,BC与⊙O切于C点,∠A=30°.

6ec8aac122bd4f6e

求证:(1)BD=CD;(2)△AOC≌△CDB.

 

查看答案

学校开展综合实践活动中,某班进行了小制作评比,作品上交时间为5月11日至5月30日,评委们把同学们上交作品的件数按5天一组分组统计,绘制了频数分布直方图如下,小长方形的高之比为:2:5:2:1.现已知第二组的上交作品件数是20件.求:

6ec8aac122bd4f6e

(1)此班这次上交作品共    件;

(2)评委们一致认为第四组的作品质量都比较高,现从中随机抽取2件作品参加学校评比,小明的两件作品都在第四组中,他的两件作品都被抽中的概率是多少?(请写出解答过程)

 

查看答案

如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.

6ec8aac122bd4f6e

(1)求证:△COM∽△CBA;

(2)求线段OM的长度.

 

查看答案

在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:

6ec8aac122bd4f6e

(1)求掷中A区、B区一次各得多少分?

(2)依此方法计算小明的得分为多少分?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.