如图1,过△ABC的顶点A作高AD,将点A折叠到点D(如图2),这时EF为折痕,且△BED和△CFD都是等腰三角形,再将△BED和△CFD沿它们各自的对称轴EH、FG折叠,使B、C两点都与点D重合,得到一个矩形EFGH(如图3),我们称矩形EFGH为△ABC的边BC上的折合矩形.
(1)若△ABC的面积为6,则折合矩形EFGH的面积为 ;
(2)如图4,已知△ABC,在图4中画出△ABC的边BC上的折合矩形EFGH;
(3)如果△ABC的边BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC边上的高AD= ,正方形EFGH的对角线长为 .
某校为了解八年级300名学生期中考的数学成绩,随机抽查了该年级50名学生的期中考数学成绩进行分析,绘制了不完整的频数分布表和频数分布直方图.
频数分布表
成绩分组 |
频 数 |
频 率 |
30≤x<40 |
1 |
0.02 |
40≤x<50 |
1 |
0.02 |
50≤x<60 |
3 |
|
60≤x<70 |
|
0.2 |
70≤x<80 |
15 |
0.3 |
80≤x<90 |
15 |
0.3 |
90≤x<100 |
5 |
0.1 |
合 计 |
50 |
1 |
(1)以上分组的组距= ;
(2)补全频数分布表和频数分布直方图;
(3)请你估计该校八年级期中考数学成绩优秀(不低于80分为优秀)的总人数.
如图,已知CB是⊙O的弦,CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.
(1)求证:AB是⊙O的切线;(2)若⊙O的半径为2,求的长.
解方程:.
(1)计算:;
(2)先化简,再求值:,其中.
如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1、P2在反比例函数(x>0)的图象上,则 .