如图,某河的两岸PQ、MN互相平行,河岸PQ上的点A处和点B处各有一棵大树,AB=30米,某人在河岸MN上选一点C,AC⊥MN,在直线MN上从点C前进一段路程到达点D,测得∠ADC=30°,∠BDC=60°,求这条河的宽度.(≈1.732,结果保留三个有效数字).
如图,某社区有一矩形广场ABCD,在边AB上的M点和边BC上的N点分别有一棵景观树,为了进一步美化环境,社区欲在BD上(点B除外)选一点P再种一棵景观树,使得∠MPN=90°,请在图中利用尺规作图画出点P的位置(要求:不写已知、求证、作法和结论,保留作图痕迹).
如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.
求证:FP=EP.
先化简,再求值:,其中.
如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB边中线CD,得到第一个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第二个三角形DEF;依此作下去…则第n个三角形的面积等于 .
如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是 .