满分5 > 初中数学试题 >

如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABC...

如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的

延长线交线段BC于点P,连AP、AG.

6ec8aac122bd4f6e

(1)求证:△AOG≌△ADG;

(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;

(3)当∠1=∠2时,求直线PE的解析式.

 

(1)证明见解析(2)∠PAG =45°,PG=OG+BP,理由见解析(3)y=x﹣1 【解析】【解析】 (1)证明:∵∠AOG=∠ADG=90°, ∴在Rt△AOG和Rt△ADG中,AO=AD,AG=AG, ∴△AOG≌△ADG(HL)。 (2)∠PAG =45°,PG=OG+BP。理由如下: 由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP。 ∵由(1)△AOG≌△ADG,∴∠1=∠DAG。 又∵∠1+∠DAG+∠DAP+∠BAP=90°, ∴2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°。∴∠PAG=∠DAG+∠DAP=45°。 ∵△AOG≌△ADG,△ADP≌△ABP,∴DG=OG,DP=BP。 ∴PG=DG+DP=OG+BP。 (3)∵△AOG≌△ADG,∴∠AGO=∠AGD。 又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠AGD=∠PGC。 又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=60°。∴∠1=∠2=30°。 在Rt△AOG中,AO=3,OG=AOtan30°=, ∴G点坐标为:(,0),CG=3﹣。 在Rt△PCG中,PC=,∴P点坐标为:(3,)。 设直线PE的解析式为y=kx+b, 则,解得。 ∴直线PE的解析式为y=x﹣1。 (1)由AO=AD,AG=AG,利用“HL”可证△AOG≌△ADG。 (2)利用(1)的方法,同理可证△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度数;根据两对全等三角形的性质,可得出线段OG、PG、BP之间的数量关系。 (3)由△AOG≌△ADG可知,∠AGO=∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,当∠1=∠2时,可证∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,确定P、G两点坐标,得出直线PE的解析式。
复制答案
考点分析:
相关试题推荐

某实验学校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,如果购买3张两人学习桌,1张三人学习桌需220元;如果购买2张两人学习桌,3张三人学习桌需310元.

(1)求两人学习桌和三人学习桌的单价;

(2)学校欲投入资金不超过6000元,购买两种学习桌共98张,以至少满足248名学生的需求,设购买两人学习桌x张,购买两人学习桌和三人学习桌的总费用为W 元,求出W与x的函数关系式;求出所有的购买方案.

 

查看答案

如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=6ec8aac122bd4f6e,延长OE到点F,使EF=2OE.

(1)求⊙O的半径;

(2)求证:BF是⊙O的切线.

6ec8aac122bd4f6e

 

查看答案

为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:

6ec8aac122bd4f6e

(1)本次抽样调查了多少个家庭?

(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;

(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数;

(4)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?

 

查看答案

现有两个不透明的乒乓球盒,甲盒中装有1个白球和2个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为6ec8aac122bd4f6e.       

(1)求乙盒中红球的个数;

(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.

 

查看答案

如图,某河的两岸PQ、MN互相平行,河岸PQ上的点A处和点B处各有一棵大树,AB=30米,某人在河岸MN上选一点C,AC⊥MN,在直线MN上从点C前进一段路程到达点D,测得∠ADC=30°,∠BDC=60°,求这条河的宽度.(6ec8aac122bd4f6e≈1.732,结果保留三个有效数字).

6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.