.证明见解析
【解析】本题主要考查了三角形的外角性质和三角形内角和定理. 由于∠DOE是△AOE的外角,故∠DOE=∠OAE+∠AEO=∠OAE+90°=∠OAE+∠ADC,即∠C+∠DOE=∠OAE+∠ADC+∠C=180°
【解析】
∠C+∠DOE=180°.
∵AD,BE是△ABC的高(已知),
∴∠AEO=∠ADC=90°(高的意义),
∵∠DOE是△AOE的外角(三角形外角的概念),
∴∠DOE=∠OAE+∠AEO(三角形的一个外角等于不相邻的两个内角的和)
=∠OAE+90°(∠AEO=90°)
=∠OAE+∠ADC(∠ADC=90°)
∴∠C+∠DOE=∠OAE+∠C+∠ADC=90°+90°=180°.
另法:在四边形CEOD中,∠C+∠EOD+90°+90°=360°,
则∠C+∠EOD=180°.