抛物线y=x2-2x+a2的顶点在直线y=2上,则a的值为( )
A.-2 B.2 C.±2 D.无法确定
抛物线y=(x+2)2-3对称轴是( )
A. x=-3 B. x=3 C. x=2 D. x=-2
将一枚硬币抛起,使其自然下落,每抛两次作为一次实验,当硬币落定后,一面朝上,我们叫做“正”,另一面朝上,我们叫做“反”.
(1)一次实验中,硬币两次落地后可能出现几种情况图片来源,百度搜索→硬币.
(2)做20次实验,根据实验结果,填写下表.
结果 |
正正 |
正反 |
反反 |
频数 |
|
|
|
频率 |
|
|
|
(3)根据上表,制作相应的频数分布直方图.
(4)经观察,哪种情况发生的频率较大.
(5)实验结果为“正反”的频率是多大.
(6)5个同学结成一组,分别汇总其中两人,三人,四人,五人的实验数据,得到40次,60次,80次,100次的实验结果,将相应数据填入下表。
实验次数 |
40次 |
60次 |
80次 |
100次 |
“正反”的频数 |
|
|
|
|
“正反”的频率 |
|
|
|
|
(7)依上表,绘制相应的折线统计图.
(8)计算“正反”出现的概率.
(9)经过以上多次重复实验,所得结果为“正反”的频率与你计算的“正反”的概率是否相近.
你还记得什么是频数、什么叫频率、什么叫概率吗?试举例说明.
如图是9×7的正方形点阵,其水平方向和竖起直方向的两格点间的长度都为1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题:
(1)请在图中画出以AB为边且面积为2的一个网格三角形;
(2)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形的面积为2的概率;
(3)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形为直角三角形的概率.
两人要去某风景区游玩,每天某—时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:
甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆乍的状况比第一辆好,他就上第二辆车;如果第二辆不比第—辆好,他就上第三辆车.若把这三辆车的舒适程度分为上、中、下三等.请问:
(1)三辆车按出现的先后顺序共有哪几种不同的可能?
(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大?为什么?