下面是小明同学在学了等腰三角形后所做的一道题,题目是这样的:“已知△ABC是等腰三角形,BC边上的高恰好等于BC边长的一半,求∠BAC的度数。”
【解析】
如图,∵AD⊥BC,AD=BC=BD=CD,
∴∠BAD=∠B=∠C=∠CAD=45°,
∴∠BAC=90°
你认为小明的解答正确吗?若不正确,请你将它补充完整。
阅读下面短文:如图1,△ABC是直角三角形,∠C=90°,现将△ABC补成长方形,使△ABC的两个顶点为长方形一边的两个端点,第三个顶点落在长方形这一边的对边上,那么符合要求的长方形可以画出两个:长方形ACBD和长方形AEFB(如图2)。
解答问题:
(1)设图2中长方形ACBD和长方形AEFB的面积分别为S1,S2,则S1 S2(填“>”、“=”或“<”)
(2)如图3,△ABC是钝角三角形,按短文中的要求把它补成长方形,那么符合要求的长方形可以画出 个,利用图3把它画出来。
(3)如图4,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成长方形,那么符合要求的长方形可以画出 个,利用图4把它画出来。
(4)在(3)中所画出的长方形中,哪一个的周长最小?为什么?
等腰三角形的一腰上的高为10cm,这条高与底边的夹角为45°,求它的面积。
给你一副三角板,你能用它拼出几个度数不同的角?请把它们都写出来。
如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状最准确的判断是( )
A.等腰三角形 B.等边三角形
C.不等边三角形 D.不能确定形状
Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是( )
A.2cm B.4cm C.8cm D.16cm