长方体可叫做 面体,也可叫做 棱柱.
已知如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F,求证:CE=DF.
已知:如图AB⊥BD,CD⊥BD,AB=DC求证:AD//BC.
如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.
(1)求∠BAC的度数.
(2)若AC=2,求AD的长.
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
[定理表述]
请你根据图1中的直角三角形,写出勾股定理内容;
[尝试证明]
以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理.
如图,如图,在△ABC中,AD⊥BC于D,∠ABC=2∠C,求证:AC2=AB2+AB•BC.