把一边长为60cm的正方形硬纸板,进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计).
(1)如图1,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.
①要使折成的长方体盒子的底面积为576cm2,那么剪掉的正方形的边长为多少?
②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)如图2,若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分正好折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为2800cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).
在△BDF中,BD=BF,以为直径的与边DF相交于点,过E作BF的垂线,垂足为C,交BD延长线于点A.
(1)求证:AC与⊙O相切.
(2)若,求的半径.
现一居民小区的圆柱形自来水管破裂,要及时更换,为此施工人员需知道水管的半径.如图,是水平放置的受损的自来水管管道截面图.(阴影部分为水).
⑴请用直尺、圆规补全水管的圆形截面图;(不写作法,但应保留作图痕迹)
⑵若水面宽AB=24cm,水面最深处为6cm,试求水管的半径.
某校从甲乙两名优秀选手中选一名选手参加全市中学生田径百米比赛(100米记录为12.2秒,通常情况下成绩为12.5秒可获冠军)。该校预先对这两名选手测试了8次,测试成绩如下表:
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
选手甲成绩(秒) |
12.1 |
12.4 |
12.8 |
12.5 |
13 |
12.6 |
12.4 |
12.2 |
选手乙成绩(秒) |
12 |
11.9 |
12.8 |
13 |
13.2 |
12.8 |
11.8 |
12.5 |
根据测试成绩,请你运用所学过的统计知识做出合理的判断,派哪一位选手参加比赛更好?为什么?
在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.
先化简,再求值:(a-2+)÷(a2+1),其中a=-2.