两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交 的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:
①△ODB与△OCA的面积相等;
②四边形PAOB的面积不会发生变化;
③PA与PB始终相等;
④当点A是PC的中点时,点B一定是PD的中点.
其中一定正确的结论有哪几个?对正确的结论要说明理由!
如图,已知反比例函数的图像上有一点P,过点P分别作x轴和y轴的垂线,垂足分别为A、B,使四边形OAPB为正方形。又在反比例函数的图像上有一点P1,过点P1分别作BP和y轴的垂线,垂足分别为A1、B1,使四边形BA1P1B1为正方形,求点P和点P1的坐标。
甲、乙两地相距100千米,一辆汽车从甲地开往乙地,将汽车由甲地到达乙地所用的时间t(小时)表示为汽车速度v(千米/小时)的函数,并画出函数的图象。
若反比例函数的图象经过(1,3)点,
(1)求该反比例函数的解析式;
(2)求一次函数y=2x+1与该反比例函数的图象的交点坐标。
如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上。
(1)求m,k的值;
(2)求直线AB的函数表达式。
已知线段MN = 1,在MN上有一点A,如果AN =,求证:点A是MN的黄金分割点.