两个五边形相似,一组对应边长分别为3cm和4.5cm;若它们的面积和是78cm2,则较大五边形的面积为( )
A.42cm2 B.52cm2 C.54cm2 D.56cm2
将一个矩形纸片ABCD沿AD和BC的中点的连线对折,要使矩形AEFB与原矩形相似,则原矩形的长和宽的比应为( )
A.2:1 B.:1 C.:1 D.1:1
如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是( )
A. 28cm2 B. 27cm2 C. 21cm2 D. 20cm
如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是( )
A.(﹣2,3) B.(2,﹣3)
C.(3,﹣2)或(﹣2,3) D.(﹣2,3)或(2,﹣3)
八年级数学学习合作小组在学过《图形的相似》这一章后,发现可将相似三角形的定义、判定以及性质拓展到矩形、菱形的相似中去.如:我们可以定义:“长和宽之比相等的矩形是相似矩形.”相似矩形也有以下的性质:相似矩形的对角线之比等于相似比,周长比等于相似比,面积比等于相似比的平方等等.请你参与这个学习小组,一同探索这类问题:
(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=,菱形A′FCE的面积是菱形ABCD面积的一半,求平移的距离AA′的长.
如图:矩形ABCD的长AB=30,宽BC=20.
(1)如图(1)若沿矩形ABCD四周有宽为1的环形区域,图中所形成的两个矩形ABCD与A′B′C′D′相似吗?请说明理由;
(2)如图(2),x为多少时,图中的两个矩形ABCD与A′B′C′D′相似?