如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,
(1)当t=2时,求△PBQ的面积;
(2)当t=时,试说明△DPQ是直角三角形;
(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.
如图,直角三角形ABC到直角三角形DEF是一个相似变换,AC与DF的长度之比是3:2.
(1)DE与AB的长度之比是多少?
(2)已知直角三角形ABC的周长是12cm,面积是6cm2,求直角三角形DEF的周长与面积.
如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上,若△ADE∽△CMN,求CM的长.
如图,在等腰梯形ABCD中,∠B=60°,且AB=AD=CD,请你将等腰梯形分成3个三角形,使得其中有两个是相似三角形,且相似比不为1.
现在请你参考示意图,另外再给出三种分割方法(注:在两个相似三角形中标明必要的角度.)
△ABC∽△A′B′C′,,AB边上的中线CD=4cm,△ABC的周长为20cm,△A′B′C′的面积是64cm2,求:
(1)A′B′边上的中线C′D′的长;
(2)△A′B′C′的周长;
(3)△ABC的面积.
如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于多少?(结果保留根号).