多项式是一个完全平方式,则的值是______
A.1 B.-1 C. D.
某商店决定购进A、B两种纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件 B 种纪念品可获利润30元,在(2)的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
把一副三角板按如图甲放置,其中,,,斜边,.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点、与D1E1相交于点F.
(1)求的度数;(4分)
(2)求线段AD1的长;(4分)
(3)若把三角形D1CE1绕着点顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?请说明理由。(4分)
为美化萧山,创建文明城市.园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在人民广场两侧,搭配每个造型所需花卉情况如下表所示:
造型 |
甲 |
乙 |
A |
90盆 |
30盆 |
B |
40盆 |
100盆 |
综合上述信息,解答下列问题:
(1)符合题意的搭配方案有哪几种?(8分)
(2)若搭配一个A型造型的成本为1000元,
搭配一个B型造型的成本为1200元.试说明运用(1)中哪种方案成本最低?(4分)
我市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下:
甲:170 165 168 169 172 173 168 167
乙:160 173 172 161 162 171 170 175
(1)甲、乙两名运动员的跳高平均成绩分别是多少?(4分)
(2)哪名运动员的成绩更为稳定?为什么?(4分)
(3)若预测,跳过165cm就很可能获得冠军。该校为了获得冠军,可能选哪位运动员参赛?若预测跳过170cm才能得冠军呢?(2分)
在平面直角坐标系中, △ABC的三个顶点的位置如图所示,点A'的坐标是
(-2,2), 现将△ABC平移,使点A变换为点A',点B′、C′分别是B、C的对应点。
(1)请画出平移后的像△A'B'C'(不写画法) ,并直接写出点B′、C′的坐标:
B′ ( ) 、C′ ( ) ;
(2)若△ABC 内部一点P的坐标为(a,b),则点P 的对应点P ′的坐标是 ( ) .