设a是最小的自然数,b是最大负整数的相反数,c是绝对值最小的有理数,则a、b、c三数之和为
A.-1 B.0 C.1 D.2
在│-3│,-│3│,(-3)5,-│-3│,-(-3)这5个数中负数共有
A.1个 B.2个 C.3个 D.4个
下列说法正确的是
A.有理数的绝对值一定是正数
B.如果两个数的绝对值相等,那么这两个数相等
C.如果一个数是负数,那么这个数的绝对值是它的相反数
D.绝对值越大,这个数就越大
利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的第9章《整式乘法与因式分解》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?
(1)如图,一个边长为1的正方形,依次取正方形面积的、、,根据图示我们可以知道: .
利用上述公式计算: .
(2)计算: ;
(3)计算: .
如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.
(1)求∠EDC的度数;
(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).
如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.
(1)将图①中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,求∠CEN的度数;
(2)将图①中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图③,且OD恰好平分∠MON,CD与MN相交于点E,求∠CEN的度数;
(3)将图①中的三角尺OCD绕点O按每秒15°的速度沿顺时针方向旋转一周,在旋转的过程中,在第 秒时,边CD恰好与边MN平行;在第 秒时,直线CD恰好与直线MN垂直.(直接写出结果)