首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为
A. B. C. D.
的值是
A.-2 B.2 C. D.-
如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t.
求:(1)C点的坐标为 ;
(2)当t为何值时,△ANO与△DMR相似?
(3)①求△HCR面积S与t的函数关系式;
②并求以A、B、C、R为顶点的四边形是梯形时t的值及S的值.
某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件.
(1)求顾客一次至少买多少件,才能以最低价购买?
(2)写出当出售x件时(x>10),利润y(元)与出售量x(件)之间的函数关系式;
(3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?为什么?
甲、乙两山地自行车选手进行骑行训练.他们在同地出发,反向而行,分别前往A地和B地.甲先出发一分钟且先到达A地.两人到达目的地后均以原速按原路立即返回,直至两人相遇.下图是两人之间的距离y(千米)随乙出发时间x(分钟)之间的变化图象.请根据图象解决下列问题:
(1)甲的速度为 千米/小时,乙的速度为 千米/小时;
(2)在图中的括号内填上正确的数值;
(3)乙出发多长时间两人首次相距22.6千米?
如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)判断AP与⊙O的位置关系,并说明理由;
(2)求PD的长.