满分5 > 初中数学试题 >

(2001•安徽)如图1,AB、CD是两条线段,M是AB的中点,S△DMC、S△...

(2001•安徽)如图1,AB、CD是两条线段,M是AB的中点,S△DMC、S△DAC、S△DBC分别表示△DMC、△DAC、△DBC的面积.当AB∥CD时,则有S△DMC=manfen5.com 满分网
(1)如图2,M是AB的中点,AB与CD不平行时,作AE、MN、BF分别垂直DC于E、N、F三个点,问结论①是否仍然成立?请说明理由.
(2)若图3中,AB与CD相交于点O时,问S△DMC、S△DAC和S△DBC三者之间存在何种相等关系?试证明你的结论.
manfen5.com 满分网
(1)先看题中给出的条件为何成立,由于三角形ADC,DMC,DBC都是同底,而由于AB∥DC,因此高相等,就能得出题中给出的结论,那么本题也要用高来求解,过A,M,B分别作BC的垂线AE,MN,BF,AE∥MN∥BF,由于M是AB中点,因此MN是梯形AEFB的中位线,因此MN=(AE+BF),三个三角形同底因此结论①是成立的. (2)本题可以利用AM=MB,让这两条边作底边来求解,三角形ADB中,小三角形的AB边上的高都相等,那么三角形ADM和DBM的面积就相等(等底同高),因此三角形OAD,OMD的和就等于三角形BMD的面积,同理三角形AOC和OMC的面积和等于三角形CMB的面积.根据这些等量关系即可得出题中三个三角形的面积关系. 【解析】 (1)当AB和CD不平行时,结论①仍然成立. 如图,由已知,可得AE、BF和MN两两平行, ∴四边形AEFB是梯形. ∵M为AB的中点, ∴MN是梯形AEFB的中位线. ∴MN=(AE+BF). ∴S△DAC+S△DBC=DC•2MN=2S△DMC, ∴S△DMC=. (2)∵M为AB的中点, ∴S△ADM=S△BDM,S△ACM=S△BCM, ∴S△DCM=S△MOD+S△MOC =(S△AMD-S△AOD)+(S△AMC-S△AOC) =(S△BDM+S△BCM)-(S△AOD+S△AOC) =(S△DBC-S△DMC)-S△DAC, ∴2S△DCM=S△DBC-S△DAC, ∴S△DMC=.
复制答案
考点分析:
相关试题推荐
(2001•安徽)某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?
查看答案
(2001•安徽)如图,自卸车车厢的一个侧面是矩形ABCD,AB=3米,BC=0.5米,车厢底部距离地面1.2米.卸货时,车厢倾斜的角度θ=60°,问此时车厢的最高点A距离地面多少米?(精确到1m)

manfen5.com 满分网 查看答案
(2001•安徽)如图所示,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m.现准备打掉部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体的面积是多少?
(精确到0.1m2,π≈3.14,manfen5.com 满分网≈1.73)

manfen5.com 满分网 查看答案
(2001•安徽)随机抽取某城市30天的空气质量状况统计如下:
污染指数(ω)407090110120140
天数(t)3510741
其中:w≤50时,空气质量为优;50<w≤100时,空气质量为良;100<w≤150时,空气质量为轻微污染.
(1)如果要利用面积分别表示空气质量的优、良及轻微污染,那么这三类空气质量的面积之比为多少?
(2)估计该城市一年(以365天计)中有多少天空气质量达到良以上;
(3)保护环境人人有责,你能说出几种保护环境的好方法吗?
查看答案
(2001•安徽)目前,包括长江、黄河等七大流域在内,全国水土流失面积达到367万平方千米,其中长江与黄河流域的水土流失总面积占全国的32.4%,而长江流域水土流失问题更为严重,它的水土流失面积比黄河流域的水土流失面积还要多29万平方千米.问长江流域的水上流失面积是多少?(结果保留整数)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.