(2001•黑龙江)城市规划期间,欲拆除一电线杆AB(如图),已知距电线杆AB水平距离14m的D处有一大坝,背水坝CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道,试问在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上,请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)(
≈1.732,
≈1.414)
考点分析:
相关试题推荐
(2001•黑龙江)如图,在平行四边形ABCD中,AB=4cm,BC=1cm,E是CD边上一动点,AE、BC的延长线交于点F.设DE=x(cm),BF=y(cm).
(1)求y(cm)与x(cm)之间的函数关系式,并写出自变量x的取值范围;
(2)画出此函数的图象.
查看答案
(2001•黑龙江)当今,青少年视力水平的下降已引起全社会的关注.为了了解某中学毕业年级300名学生的视力情况,从中抽测了一部分学生的视力,进行数据整理如下:
分组 | 频数 | 频率 |
3.95~4.25 | 2 | 0.04 |
| 6 | 0.12 |
| 23 | |
4.85~5.15 | | |
5.15~5.45 | 1 | 0.02 |
合计 | | 1.00 |
(1)在这个问题中,总体是______;
(2)填写频率分布表中未完成的部分;
(3)若视力为4.9,5.0,5.1均属正常,不需矫正,试估计该校毕业年级学生视力正常的人数约为多少.
查看答案
(2001•黑龙江)用两种方法证明等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形(要求:画出图形,写出已知、求证、证明).
查看答案
(2001•黑龙江)先化简,再求值:
,其中x=tan60°-3.
查看答案
(2001•黑龙江)如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为( )
A.
B.1
C.1或3
D.
查看答案