满分5 > 初中数学试题 >

(2001•黑龙江)如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作...

(2001•黑龙江)如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:
(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述结论是否成立?请说明理由;
(2)如果AB=AC=5cm,sinA=manfen5.com 满分网,那么圆心O在AB的什么位置时,⊙O与AC相切?

manfen5.com 满分网
(1)结论仍然成立.在连接OD后,因为OD=OB,AB=AC,则有∠ABC=∠ACB=∠ODB,所以OD和AC永远平行;又DE和AC垂直,所以DE和OD也垂直,即DE是⊙O的切线. (2)当⊙O与AC相切时,若假设切点为F,⊙O与AB相交于G,则OF和AC垂直,即△AOF是一个以AO为斜边的直角三角形;从而根据三角函数求得OF,OB的长,即可确定圆心O在AB的什么位置时,⊙O与AC相切. 【解析】 (1)结论成立.理由如下: 如图,连接OD; ∵OD=OB, ∴∠ABC=∠ODB, ∵AB=AC, ∴∠ABC=∠ACB, ∴∠ACB=∠ODB, ∴OD∥AC; 又∵DE⊥AC, ∴DE⊥OD,即DE是⊙O的切线. (2)当圆心O在AB上距B点为3x=时,⊙O与AC相切. 如图所示,⊙O与AC相切于F,⊙O与AB相交于G.则OF⊥AC; 在RT△AOF中,sinA=OF:AO=3:5; 设OF=3X,AO=5X,则OB=OG=OF=3X,AG=2X, ∴8x=AB=5, ∴x=,此时OB=3x=时, 即当圆心O在AB上距B点为3x=时,⊙O与AC相切.
复制答案
考点分析:
相关试题推荐
(2001•黑龙江)城市规划期间,欲拆除一电线杆AB(如图),已知距电线杆AB水平距离14m的D处有一大坝,背水坝CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道,试问在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上,请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)(manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414)

manfen5.com 满分网 查看答案
(2001•黑龙江)如图,在平行四边形ABCD中,AB=4cm,BC=1cm,E是CD边上一动点,AE、BC的延长线交于点F.设DE=x(cm),BF=y(cm).
(1)求y(cm)与x(cm)之间的函数关系式,并写出自变量x的取值范围;
(2)画出此函数的图象.

manfen5.com 满分网 查看答案
(2001•黑龙江)当今,青少年视力水平的下降已引起全社会的关注.为了了解某中学毕业年级300名学生的视力情况,从中抽测了一部分学生的视力,进行数据整理如下:
分组频数频率
3.95~4.2520.04
60.12
23
4.85~5.15
5.15~5.4510.02
合计1.00
(1)在这个问题中,总体是______
(2)填写频率分布表中未完成的部分;
(3)若视力为4.9,5.0,5.1均属正常,不需矫正,试估计该校毕业年级学生视力正常的人数约为多少.
查看答案
(2001•黑龙江)用两种方法证明等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形(要求:画出图形,写出已知、求证、证明).
查看答案
(2001•黑龙江)先化简,再求值:manfen5.com 满分网,其中x=tan60°-3.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.