满分5 > 初中数学试题 >

(2006•益阳)如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0...

(2006•益阳)如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0).
(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;
(2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(-2,n)在直线BC上,试判断E点是否在经过D点的反比例函数的图象上,把你的判断过程写出来;
(3)请设法求出tan∠DAC的值.

manfen5.com 满分网
(1)把A点的坐标代入抛物线的解析式,就可以求出m的值,得到抛物线的解析式.在解析式中令y=0,解方程就可以求出与x轴的交点. (2)根据函数解析式就可求出抛物线的顶点坐标,利用待定系数法求出反比例函数的解析式. 经过C,B的直线解析式可以用待定系数法求得,进而求出E点的坐标.把E的坐标代入反比例函数解析式,就可以判断是否在反比例函数的图象上. (3)过D作DF⊥y轴于点F,则△CFD为等腰直角三角形,△AOC是等腰直角三角形,根据勾股定理就可以求出CD,AC的长度.Rt△ADC中中根据三角函数的定义就可以求出三角函数值. 【解析】 (1)因为A(3,0)在抛物线y=-x2+mx+3上, 则-9+3m+3=0,解得m=2. 所以抛物线的解析式为y=-x2+2x+3. 因为B点为抛物线与x轴的交点,求得B(-1,0), 因为C点为抛物线与y轴的交点,求得C(0,3). (2)∵y=-x2+2x+3=-(x-1)2+4, ∴顶点D(1,4), 画这个函数的草图. 由B,C点的坐标可求得直线BC的解析式为y=3x+3, ∵点E(-2,n)在y=3x+3上, ∴E(-2,-3). 可求得过D点的反比例函数的解析式为y=. 当x=-2时,y==-2≠-3. ∴点E不在过D点的反比例函数图象上. (3)过D作DF⊥y轴于点F,则△CFD为等腰直角三角形,且CD=. 连接AC,则△AOC为等腰直角三角形,且AC=3. 因为∠ACD=180°-45°-45°=90°, ∴Rt△ADC中,tan∠DAC=. 另【解析】 ∵Rt△CFD∽Rt△COA, ∴. ∵∠ACD=90°, ∴tan∠DAC=.
复制答案
考点分析:
相关试题推荐
(2006•益阳)如图,桌面内,直线l上摆放着两块大小相同的直角三角板,它们中较小直角边的长为6cm,较小锐角的度数为30°.
(1)将△ECD沿直线AC翻折到如图(a)的位置,ED′与AB相交于点F,请证明:AF=FD′;
(2)将△ECD沿直线l向左平移到(b)的位置,使E点落在AB上,你可以求出平移的距离,试试看;
(3)将△ECD绕点C逆时针方向旋转到图(c)的位置,使E点落在AB上,请求出旋转角的度数.
manfen5.com 满分网
查看答案
(2006•益阳)如图,平面上的四边形ABCD是一只“风筝”的骨架,其中AB=AD,CB=CD.
(1)九年级王云同学观察了这个“风筝”的骨架后,他认为四边形ABCD的两条对角线AC⊥BD,垂足为E,并且BE=ED,你同意王云同学的判断吗?请充分说明理由;
(2)设对角线AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.

manfen5.com 满分网 查看答案
(2006•益阳)城西中学七年级学生共400人,学校决定组织该年级学生到某爱国主义教育基地接受教育,并安排10位教师同行.经学校与汽车出租公司协商,有两种型号的客车可供选择,其座位数(不含司机座位)与租金如下表,学校决定租用客车10辆.
  大巴中巴 
 座位数(个/辆) 45 30
 租金(元/辆) 800 500
(1)为保证每人都有座位,显然座位总数不能少于410.设租大巴x辆,根据要求,请你设计出可行的租车方案共有哪几种?
(2)设大巴、中巴的租金共y元,写出y与x之间的函数关系式;在上述租车方案中,哪种租车方案的租金最少?最少租金为多少元?
查看答案
(2006•益阳)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:
李小波:阿姨,您好!
售货员:同学,你好,想买点什么?
李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.
售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.
根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
查看答案
(2006•益阳)课外实践活动中,数学老师带领学生测量学校旗杆的高度.如图,在A处用测角仪(离地高度为1.5米)测得旗杆顶端的仰角为15°,朝旗杆方向前进23米到B处,再次测得旗杆顶端的仰角为30°,求旗杆EG的高度.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.