满分5 > 初中数学试题 >

(2006•长春)如图,在平面直角坐标系中,两个函数y=x,y=-x+6的图象交...

(2006•长春)如图,在平面直角坐标系中,两个函数y=x,y=-manfen5.com 满分网x+6的图象交于点A.动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ∥x轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S.
(1)求点A的坐标.
(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式.
(3)在(2)的条件下,S是否有最大值若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.
(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积最大时,运动时间t满足的条件是______

manfen5.com 满分网
(1)因为两个函数y=x,y=-x+6的图象交于点A,所以将两个函数的解析式联立,得到方程组,解之即可; (2)因为点P在直线OA即y=x上以每秒1个单位的速度运动,所以OP=t,而OA是第一、三象限坐标轴夹角的平分线,所以点P坐标为,又因PQ∥x轴交直线BC于点Q,所以可得点Q的纵坐标为,并且点Q在y=-x+6上,因此可得到关于x、t的关系式,经过变形可用t表示x,即得到点Q坐标为,,当重叠部分是正方形时,分情况代入面积公式中求解; (3)结合(2)中的关系式可知有最大值,并且最大值应在中,利用二次函数最值的求法就可得到S的最大值为12; (4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积正好最大时,此时重合部分就是△AOB,B的坐标为(12,0),并且有PB⊥OB,PB=OB=12,所以OP=12,即t≥12. 【解析】 (1)由可得, ∴A(4,4); (2)点P在y=x上,OP=t, 则点P坐标为, 点Q的纵坐标为,并且点Q在y=-x+6上, ∴, 即点Q坐标为,, 当时,, 当时,, 当点P到达A点时,, 当时,, =; (3)有最大值,最大值应在中, , 当时,S的最大值为12; (4)当正方形PQMN与△OAB重叠部分面积正好最大时,此时重合部分就是△AOB, ∵B的坐标为(12,0),PB⊥OB, ∴PB=OB=12, ∴OP=12, ∴t≥12.
复制答案
考点分析:
相关试题推荐
(2006•长春)某厂生产一种零件,每个成本为40元,销售单价为60元.该厂为了鼓励客户购买,决定当一次购买零件超过100个时,多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.
(1)当一次购买多少个零件时,销售单价恰为51元?
(2)设一次购买零件x个时,销售单价为y元,求y与x的函数关系式;
(3)当客户一次购买500个零件时,该厂获得的利润是多少当客户一次购买1000个零碎件时,利润又是多少?(利润=售价-成本)
查看答案
(2006•长春)如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于F.求证:PM=QM.

manfen5.com 满分网 查看答案
(2006•长春)如图,二次函数y=x2+bx+c的图象经过点M(1,-2)、N(-1,6).
(1)求二次函数y=x2+bx+c的关系式;
(2)把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0),(4,0),BC=5.将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.

manfen5.com 满分网 查看答案
(2006•长春)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.在Rt△ABC的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,如图所示.
要求:在答题卡的两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.(请同学们先用铅笔画出草图,确定后再用0.5毫米的黑色签字笔画出正确的图形)
manfen5.com 满分网
查看答案
(2006•长春)A城市每立方米水的水费是B城市的1.25倍,同样交水费20元,在B城市比在A城市可多用2立方米水,那么A、B两城市每立方米水的水费各是多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.