(2006•淮安)阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用S
△ABC表示△ABC的面积.
∵S
△ABC=S
△OAB+S
△OBC+S
△OCA又∵S
△OAB=
AB•r,S
△OBC=
BC•r,S
△OCA=
CA•r
∴S
△ABC=
AB•r+
BC•r+
CA•r=
l•r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a
1、a
2、a
3、…、a
n,合理猜想其内切圆半径公式(不需说明理由).
考点分析:
相关试题推荐
(2006•淮安)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).
(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)分别写出B、C两点的对应点B′、C′的坐标;
(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.
查看答案
(2006•淮安)如图,AB=CD=ED,AD=EB,BE⊥DE,垂足为E.
(1)求证:△ABD≌△EDB;
(2)只需添加一个条件,即______等,可使四边形ABCD为矩形.请加以证明.
查看答案
(2006•淮安)小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:“特里得分的两倍与纳什得分的差大于10,纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下,究竟是哪个队赢.本场比赛特里、纳什各得了多少分?
查看答案
(2008•乌兰察布)在“不闯红灯,珍惜生命”活动中,文明中学的关欣和李好两位同学某天来到城区中心的十字路口,观察、统计上午7:00~12:00中闯红灯的人次.制作了如下的两个数据统计图.
(1)求图(一)提供的五个数据(各时段闯红灯人次)的众数和平均数;
(2)估计一个月(按30天计算)上午7:00~12:00在该十字路口闯红灯的未成年人约有______人次;
(3)请你根据统计图提供的信息向交通管理部门提出一条合理化建议.
查看答案
(2006•淮安)已知:线段m、n,
(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);
(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可).
查看答案