满分5 > 初中数学试题 >

(2006•苏州)今年,苏州市政府的一项实事工程就是由政府投入1 000万元资金...

(2006•苏州)今年,苏州市政府的一项实事工程就是由政府投入1 000万元资金.对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1200户家庭中的120户进行了随机抽样调查,并汇总成下表:
改造情况均不改造改造水龙头改造马桶
1个2个3个4个1个2个
户数2031282112692
(1)试估计该社区需要对水龙头、马桶进行改造的家庭共有______户;
(2)改造后一只水龙头一年大约可节省5吨水,一只马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水?
(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?
(1)首先计算样本中需要对水龙头、马桶进行改造的家庭所占的百分比,然后根据样本进一步估计总体; (2)首先计算100户共节约用水量,再进一步计算该社区共节约用水量; (3)根据题意设未知数,列方程即可求【解析】 改造水龙头数+改造马桶数+既要改造水龙头又要改造马桶数=100. 【解析】 (1)在抽查的120户中,均不改造的20户,另外的100户需要对水龙头、马桶进行改造.照此比例,估计该社区1200户家庭中需要对水龙头、马桶进行改造的家庭户数为 1200×=1000(户) (2)抽样的120户家庭一年共可节约用水: (1×31+2×28+3×21+4×12)×5+(1×69+2×2)×15=198×5+73×15=2085(吨). 所以,该社区一年共可节约用水的吨数为2085×=20850(吨). (3)设既要改造水龙头又要改造马桶的家庭共有x户,则只改造水龙头不改造马桶的家庭共有(92一x)户,只改造马桶不改造水龙头的家庭共有(71一x)户,根据题意列方程,得 x+(92-x)+(71-x)=100,解得,x=63. 所以,既要改造水龙头又要改造马桶的家庭共有63户. 也可以从另一角度考虑,从表中数据可以看出,在这120户中,改造水龙头和改造马桶的户数之和为31+28+21+12+69+2=163(户). 由于只有100户需要对水龙头、马桶进行改造,所以多出的就是既要改造水龙头又要改造马桶的家庭.因此,此类家庭的人数为163-100=63(户). 答:既要改造水龙头又要改造马桶的家庭共有63户.
复制答案
考点分析:
相关试题推荐
(2006•苏州)已知函数y=manfen5.com 满分网和y=kx+1(k≠0).
(1)若这两个函数的图象都经过点(1,a),求a和k的值;
(2)当k取何值时,这两个函数的图象总有公共点.
查看答案
(2006•苏州)如图,在一个坡角为15°的斜坡上有一棵树,高为AB.当太阳光与水平线成50°时,测得该树在斜坡上的树影BC的长为7m,求树高.(精确到0.1m)

manfen5.com 满分网 查看答案
(2006•苏州)如图,梯形ABCD中.AB∥CD.且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.

manfen5.com 满分网 查看答案
(2006•苏州)如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.
(1)任意闭合其中一个开关,则小灯泡发光的概率等于______
(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.

manfen5.com 满分网 查看答案
(2006•苏州)台球是一项高雅的体育运动.其中包含了许多物理学、几何学知识.图①是一个台球桌,目标球F与本球E之间有一个G球阻挡
(1)击球者想通过击打E球先撞击球台的AB边.经过一次反弹后再撞击F球.他应将E球打到AB边上的哪一点,请在图①中用尺规作出这一点H,并作出E球的运行路线;(不写画法.保留作图痕迹)
(2)如图②,现以D为原点,建立直角坐标系,记A(0,4),C(8,0),E(4,3),F(7,1),求E球接刚才方式运行到F球的路线长度.(忽略球的大小)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.