(2006•苏州)如图①,△ABC内接于⊙O,且∠ABC=∠C,点D在弧BC上运动.过点D作DE∥BC,DE交直线AB于点E,连接BD.
(1)求证:∠ADB=∠E;
(2)求证:AD
2=AC•AE;
(3)当点D运动到什么位置时,△DBE∽△ADE.请你利用图②进行探索和证明.
考点分析:
相关试题推荐
(2006•苏州)今年,苏州市政府的一项实事工程就是由政府投入1 000万元资金.对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1200户家庭中的120户进行了随机抽样调查,并汇总成下表:
改造情况 | 均不改造 | 改造水龙头 | 改造马桶 |
1个 | 2个 | 3个 | 4个 | 1个 | 2个 |
户数 | 20 | 31 | 28 | 21 | 12 | 69 | 2 |
(1)试估计该社区需要对水龙头、马桶进行改造的家庭共有______户;
(2)改造后一只水龙头一年大约可节省5吨水,一只马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水?
(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?
查看答案
(2006•苏州)已知函数y=
和y=kx+1(k≠0).
(1)若这两个函数的图象都经过点(1,a),求a和k的值;
(2)当k取何值时,这两个函数的图象总有公共点.
查看答案
(2006•苏州)如图,在一个坡角为15°的斜坡上有一棵树,高为AB.当太阳光与水平线成50°时,测得该树在斜坡上的树影BC的长为7m,求树高.(精确到0.1m)
查看答案
(2006•苏州)如图,梯形ABCD中.AB∥CD.且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
查看答案
(2006•苏州)如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.
(1)任意闭合其中一个开关,则小灯泡发光的概率等于______;
(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.
查看答案