满分5 > 初中数学试题 >

(2006•江西)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交于D. (...

(2006•江西)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交manfen5.com 满分网于D.
(1)请写出四个不同类型的正确结论;
(2)连接CD,设∠CDB=α,∠ABC=β,试找出α与β之间的一种关系式,并予以证明.

manfen5.com 满分网
(1)AB是⊙O的直径,BC是弦,OD⊥BC于E,本题满足垂径定理. (2)根据四边形ACDB为圆内接四边形,可以得到α-β=90°,再根据∠CDO=∠ODB=∠CDB得到α>2β. 【解析】 (1)不同类型的正确结论有: ①BE=CE; ②BD=CD; ③∠BED=90°; ④∠BOD=∠A; ⑤AC∥OD; ⑥AC⊥BC; ⑦OE2+BE2=OB2; ⑧S△ABC=BC•OE; ⑨△BOD是等腰三角形; ⑩△BOE∽△BAC;等等. (说明:1.每写对一条给(1分),但最多只给(4分); (结论与辅助线有关且正确的,也相应给分). (2)α与β的关系式主要有如下两种形式,请参照评分: ①答:α与β之间的关系式为:α-β=90°(5分) 证明:∵AB为圆O的直径 ∴∠A+∠ABC=90°①(6分) 又∵四边形ACDB为圆内接四边形 ∴∠A+∠CDB=180°②(7分) ∴②-①得:∠CDB-∠ABC=90° 即α-β=90°(8分) (说明:关系式写成α=90°+β或β=α-90°的均参照给分.) ②答:α与β之间的关系式为:α>2β(5分) 证明:∵OD=OB ∴∠ODB=∠OBD 又∵∠OBD=∠ABC+∠CBD ∴∠ODB>∠ABC(6分) ∵OD⊥BC, ∴CD=BD ∴∠CDO=∠ODB=∠CDB(7分) ∴∠CDB>∠ABC 即α>2β.(8分) (说明:若得出α与β的关系式为α>β,且证明正确的也给满分.)
复制答案
考点分析:
相关试题推荐
(2006•江西)如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°.
(1)求点A的坐标;
(2)若直线AB交y轴于点C,求△AOC的面积.

manfen5.com 满分网 查看答案
(2006•江西)已知关于x的一元二次方程x2+kx-1=0,
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根分别为x1,x2,且满足x1+x2=x1•x2,求k的值.
查看答案
(2006•江西)计算:(x-y)2-(y+2x)(y-2x)
查看答案
(2008•庆阳)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )
manfen5.com 满分网
A.6.4米
B.7米
C.8米
D.9米
查看答案
(2006•江西)某公司2003年缴税60万元,2005年缴税80万元,设该公司这两年缴税的年平均增长率为x,则得到方程( )
A.60+2x=80
B.60(x+1)=80
C.60x2=80
D.60(x+1)2=80
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.