(2006•大连)如图,点P(-m,m
2)抛物线:y=x
2上一点,将抛物线E沿x轴正方向平移2m个单位得到抛物线F,抛物线F的顶点为B,抛物线F交抛物线E于点A,点C是x轴上点B左侧一动点,点D是射线AB上一点,且∠ACD=∠POM.问△ACD能否为等腰三角形?若能,求点C的坐标;若不能,请说明理由.
说明:
(1)如果你反复探索,没有解决问题,请写出探索过程(要求至少写3步);
(2)在你完成(1)之后,可以从①、②中选取一个条件,完成解答(选取①得7分;选取②得10分).①m=1;②m=2.
考点分析:
相关试题推荐
(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.
探究:
(1)请猜想与线段DE有关的三个结论;
(2)请你利用图2,图3选择不同位置的点P按上述方法操作;
(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;
如果你认为你写的结论是错误的,请用图2或图3加以说明;
(注意:错误的结论,只要你用反例给予说明也得分)
(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).
查看答案
(2006•大连)小明为了通过描点法作出函数y=x
2-x+1的图象,先取自变量x的7个值满足:
x
2-x
1=x
3-x
2=…=x
7-x
6=d,再分别算出对应的y值,列出表:
x | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
y | 1 | 3 | 7 | 13 | 21 | 31 | 43 |
记m
1=y
2-y
1,m
2=y
3-y
2,m
3=y
4-y
3,m
4=y
5-y
4,…;s
1=m
2-m
1,s
2=m
3-m
2,s
3=m
4-m
3,…
(1)判断s
1、s
2、s
3之间关系,并说明理由;
(2)若将函数“y=x
2-x+1”改为“y=ax
2+bx+c(a≠0)”,列出表:
x | x1 | x2 | x3 | x4 | x5 | x6 | x7
|
y | y1 | y2 | y3 | y4 | y5 | y6 | y7
|
其他条件不变,判断s
1、s
2、s
3之间关系,并说明理由;
(3)小明为了通过描点法作出函数y=ax
2+bx+c(a≠0)的图象,列出表:
x | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
y | 10 | 50 | 110 | 190 | 290 | 412 | 550 |
由于小明的粗心,表中有一个y值算错了,请指出算错的y值(直接写答案).
查看答案
(2006•大连)如图1、图2分别是两个相同正方形、正六边形,其中一个正多边形的顶点在另一个正多边形外接圆圆心O处.
(1)求图1中,重叠部分面积与阴影部分面积之比;
(2)求图2中,重叠部分面积与阴影部分面积之比(直接出答案);
(3)根据前面探索和图3,你能否将本题推广到一般的正n边形情况,(n为大于2的偶数)若能,写出推广问题和结论;若不能,请说明理由.
查看答案
(2006•大连)甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).
(1)求甲、乙两队完成任务需要的时间(用含x、y的代数式表示);
(2)问甲、乙两队哪队先完成任务?
查看答案
(2006•大连)早晨小欣与妈妈同时从家里出发,步行与骑自行车到方向相反的两地上学与上班,图是他们离家的路程y(米)与时间x(分)的函数图象.妈妈骑车走了10分时接到小欣的电话,即以原速骑车前往小欣学校,并与小欣同时到达学校.已知小欣步行速度为每分50米,求小欣家与学校距离及小欣早晨上学需要的时间.
查看答案