(2006•鄂尔多斯)如图(a),两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)将图(a)中的△OAB绕点O顺时针旋转90°角,在图(b)中作出旋转后的△OAB(保留作图痕迹,不写作法,不证明);
(2)在图(a)中,你发现线段AC,BD的数量关系是______,直线AC,BD相交成______度角;
(3)将图(a)中的△OAB绕点O顺时针旋转一个锐角,得到图(c),这时(2)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.
考点分析:
相关试题推荐
(2007•白银)某产品每件成本10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:
x(元) | 15 | 20 | 25 | … |
y(件) | 25 | 20 | 15 | … |
(1)在草稿纸上描点,观察点的分布,确定y与x的函数关系式;
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?
查看答案
(2006•鄂尔多斯)如图,有两个可以自由转动的均匀转盘A,B.转盘A被平均分成3等份,分别标上1,2,3三个数字;转盘B被平均分成4等份,分别标上3,4,5,6四个数字.有人为甲、乙两人设计了一个游戏规则;自由转动转盘A与B,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜,否则为乙获胜.你认为这样的游戏规则是否公平?如果公平,请说明理由;如果不公平,怎样修改规则才能使游戏对双方公平?
查看答案
(2006•鄂尔多斯)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于D,交AB于E,且CF=BE.
(1)求证:四边形BECF是菱形;
(2)当∠A的大小满足什么条件时,菱形BECF是正方形?回答并证明你的结论.
查看答案
(2006•鄂尔多斯)我市某中学为了解九年级300名学生的理化实验操作水平,从中随机抽取30名学生进行测试.下表是这30名学生的测试成绩(分):
4 | 5 | 7 | 6 | 3 | 7 | 9 | 4 | 5 | 7 |
7 | 3 | 7 | 5 | 6 | 8 | 7 | 5 | 6 | 8 |
6 | 7 | 4 | 10 | 5 | 6 | 7 | 3 | 9 | 4 |
(1)请你设计一张统计表,能够清楚反映出各成绩的人数分布情况;
(2)求出这30名学生成绩的平均数、众数;
(3)如果测试成绩6分以上(包括6分)为合格,请估计300名学生中成绩合格的约有多少人?
查看答案
(2006•鄂尔多斯)高为12米的教学楼ED前有一棵大树AB,如图(a).
(1)某一时刻测得大树AB、教学楼ED在阳光下的投影长分别是BC=2.5米,DF=7.5米,求大树AB的高度;
(2)现有皮尺和高为h米的测角仪,请你设计另一种测量大树AB高度的方案,要求:
①在图(b)中,画出你设计的测量方案示意图,并将应测量的数据标记在图上(长度用字母m,n …表示,角度用希腊字母α,β …表示);
②根据你所画出的示意图和标注的数据,求出大树的高度.(用字母表示)
查看答案