(2006•泰安)如图,Rt△AOB是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,OB=
,∠BAO=30度.将Rt△AOB折叠,使BO边落在BA边上,点O与点D重合,折痕为BC.
(1)求直线BC的解析式;
(2)求经过B,C,A三点的抛物线y=ax
2+bx+c的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由.
考点分析:
相关试题推荐
(2006•泰安)(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;
(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为______;∠APB的大小为______;
(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD间的等量关系式为______;∠APB的大小为______.
查看答案
(2006•泰安)某商场销售某种商品,第一个月将此商品的进价提高百分之25作为销售价,共获利6000元,第二个月商场搞促销活动,将商品的进价提高百分之10作为销售价,第二个月比第一个月增加了80件,并且第二个月比第一个月多获利400元.问此商品的进价每件是多少元?商场第二个月共销售商品多少件?
查看答案
(2006•泰安)如图,矩形ABCD的对角线交于点O,AE⊥BD,CF⊥BD,垂足分别为E,F,连接AF,CE.
(1)求证:四边形AECF是平行四边形;
(2)若∠BAD的平分线与FC的延长线交于点G,则△ACG是等腰三角形吗?并说明理由.
查看答案
(2006•泰安)为了让学生了解环保知识,增强环保意识.某中学举办了一次“环保知识竞赛”活动,共有750名学生参加了竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计,其中成绩在60.5~70.5分范围内的频率是0.12.请你根据下面尚未完成的频数分布表,解答下列问题:
频数分布表 |
分组编号 | 成绩/分 | 频数 |
1 | 60.5~70.5 | 6 |
2 | 70.5~80.5 | 12 |
3 | 80.5~90.5 | 18 |
4 | 90.5~100.5 | |
合计 | |
(1)补全频数分布表;
(2)成绩的中位数落在哪一组内?
(3)若成绩在80分以上(不含80分)为优秀,则该校成绩优秀的学生约为多少人?
查看答案
(2006•泰安)(1)解不等式组:
;
(2)化简:
.
查看答案