满分5 > 初中数学试题 >

(2006•太原)如图:已知直线y=kx+1经过点A(3,-2)、点B(a,2)...

(2006•太原)如图:已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M,
(1)求a的值及AM的长;
(2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标;
(3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标.

manfen5.com 满分网
(1)把A点坐标代入可求出直线的解析式,再把B点坐标代入求出a值,由两点间的距离公式求得AM的值; (2)使△AMP为等腰三角形,应分三种情况:①AP=MP;②AM=AP;③AM=MP,由等腰三角形的性质可求得点P的坐标; (3)由题意知,AB绕点A逆时针旋转45°得到的直线AC与与x轴平行,求得点D的坐标,求得△ADB的面积后,点P的位置应分两种情况计算:当点P在AB上时,又分两种情况;当点P在BD上时,可得是不存在的. 【解析】 (1)∵点A(3,-2)在直线y=kx+1上, ∴-2=3k+1, ∴k=-1, ∴解析式为y=-x+1,把点B坐标代入解析式, 得:2=-a+1, ∴a=-1, ∴点B坐标为(-1,2), 令x=0,则y=1, ∴点M的坐标为(0,1), ∴AM==3; (2)设P点坐标为(a,0), ①当AP=MP时,则△APM是等腰三角形, ∴(a-3)2+4=a2+1, 解得:a=2, ∴P坐标(2,0); 不符合题意,故舍去, ②当AM=AP时, ∴3=, 解得a=3-, ∴P坐标(3-,0); ③当MP=AM=3时, 点P的坐标为(-,0); (3)直线AB绕点A逆时针旋转45°时,得到的直线AC与x轴平行, ∴D(-3,b), ∴b=-2, ∵BE是△ABD的高, ∴点E坐标为(-1,-2), ∴AD=6,BE=4, 又S△ABD=AD•BE=×6×4=12, EF将△ABD的面积分成2:3两部分, ∴两部分面积分别为12×=,12×=, 设点F在AB上,则F点坐标为(a,b), 则×4×(2+b)=, ∴b=, 将F(a,)代入y=-x+1得,a=, 同理可得另一种可能F(-,), 若F在AB上,F或F, 若F在BD上,由S△BDE=DE•BE=4<12×=,故这种情况不存在.
复制答案
考点分析:
相关试题推荐
(2006•太原)在学习扇形的面积公式时,同学们推得S扇形=manfen5.com 满分网,并通过比较扇形面积公式与弧长公式l=manfen5.com 满分网,得出扇形面积的另一种计算方法S扇形=manfen5.com 满分网lR.接着老师让同学们解决两个问题:
问题Ⅰ:求弧长为4π,圆心角为120°的扇形面积.
问题Ⅱ:某小区设计的花坛形状如图中的阴影部分,已知AB和CD所在圆心都是点O,弧AB的长为l1,弧CD的长为l2,AC=BD=d,求花坛的面积.
(1)请你解答问题Ⅰ;
(2)在解完问题Ⅱ后的全班交流中,有位同学发现扇形面积公式S扇形=manfen5.com 满分网lR类似于三角形面积公式;类比梯形面积公式,他猜想花坛的面积S=manfen5.com 满分网(l1+l2)d.他的猜想正确吗?如果正确,写出推导过程;如果不正确,请说明理由.

manfen5.com 满分网 查看答案
(2006•太原)某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3米,最高3.5米的厢式货车.按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5米.为设计这条能使上述厢式货车恰好安全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式、隧道的跨度AB和拱高OC.

manfen5.com 满分网 查看答案
(2006•太原)王女士看中的商品在甲,乙两商场以相同的价格销售,两商场采用的促销方式不同:在甲商场一次性购物超过100元,超过部分八折优惠;在乙商场一次性购物超过50元,超过部分打九折优惠,那么她在甲商场购物多少元就比在乙商场购物优惠?
查看答案
(2006•太原)如图所示,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.
(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;
(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?
(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.

manfen5.com 满分网 查看答案
(2006•太原)“石头、剪刀、布”是广为流传的游戏.游戏时甲、乙双方每次出“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头”,同种手势不分胜负.假定甲、乙两人每次都是等可能地出这三种手势,用画树状图或列表的方法分别求出一次游戏中两人出同种手势的概率和甲获胜的概率.(提示:为书写方便,解答时可以用S表示“石头”,用J表示“剪刀”,用B表示“布”)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.