(2006•陕西)王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①).王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCFE围成的区域(如图②).由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点.
(1)求FC的长;
(2)利用图②求出矩形顶点B所对的顶点到BC边的距离x(cm)为多少时,矩形的面积y(cm
2)最大?最大面积是多少?
(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.
考点分析:
相关试题推荐
(2006•陕西)某单位需以“挂号信”或“特快专递”方式向五所学校各寄一封信.这五封信的重量分别是72g,90g,215g,340g,400g.根据这五所学校的地址及信件的重量范围,在邮局查得相关邮费标准如下:
业务种类 | 计费单位 | 资费标准(元) | 挂号费(元/封) | 特制信封 (元/个) |
挂号信 | 首重100g,每重20g | 0.8 | 3 | 0.5 |
续重101~2000g,每重100g | 2.00 |
特快专递 | 首重1000g内 | 5.00 | 3 | 1.0 |
(1)重量为90g的信若以“挂号信”方式寄出,邮寄费为多少元?若以“特快专递”方式寄出呢?
(2)这五封信分别以怎样的方式寄出最合算?请说明理由.
(3)通过解答上述问题,你有何启示?(请你用一、两句话说明)
查看答案
(2006•陕西)如图,⊙O的直径AB=4,∠ABC=30°,BC=
,D是线段BC的中点.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.
查看答案
(2006•陕西)有两个可以自由转动的均匀转盘A、B,都被分成了3等份,并在每份内均标有数字,如图所示,规则如下:
①分别转动转盘A、B.
②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停在等分线上,那么重转一次,直到指针指向某一份为止).
(1)用列表法(或树状图)分别求出数字之积为3的倍数和为5的倍数的概率;
(2)小亮和小芸想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小亮得2分;数字之积为5的倍数时,小芸得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏双方公平.
查看答案
(2006•陕西)甲、乙两车从A地出发,沿同一条高速公路行驶至距A地400千米的B地.l
1,l
2分别表示甲、乙两车行驶路程y(千米)与时间x(时)之间的关系(如图所示).根据图象提供的信息,解答下列问题:
(1)求l
2的函数表达式(不要求写出x的取值范围);
(2)甲、乙两车哪一辆先到达B地该车比另一辆车早多长时间到达B地?
查看答案
(2006•陕西)如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.
(1)图中共有几对全等三角形,请把它们都写出来;
(2)求证:∠MAE=∠NCF.
查看答案