满分5 > 初中数学试题 >

(2006•巴中)如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半...

(2006•巴中)如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上.
(1)求直线BC的解析式;
(2)求抛物线的解析式;
(3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)求直线BC的解析式,首先要求出的是B、C的坐标,即OB、OC的长;连接O′B,在直角三角形O′DB中可根据O′D及半径的长用勾股定理求出DB的长,然后根据OD的长即O′横坐标的绝对值求出OB的长,即可求出B的坐标.求OC长,可根据△BOC∽△O′DB得出的比例线段来求出.求出B、C的坐标后,可用待定系数法求出直线BC的解析式. (2)由于抛物线过A、B两点,根据抛物线的对称性进可得出抛物线的对称轴为x=-2,又已知抛物线的顶点在直线BC上,由此可求出抛物线顶点的坐标.然后用顶点式的二次函数通式来设抛物线的解析式,然后将B点坐标代入即可求出抛物线的解析式. (3)可根据(2)得出的抛物线的解析式,求出P点的坐标.由于四边形DBPQ为平行四边形,那么DP平行且相等于DB,因此可将P点坐标左移DB长即4个单位,即可得出Q点,然后将Q点坐标代入抛物线的解析式中即可判断出Q点是否在抛物线上. 【解析】 (1)连接O′B ∵O′(-2,-3),MN过点O′且与x轴垂直 ∴O′D=3,OD=2,AD=BD=AB ∵⊙O′的半径为5 ∴BD=AD=4 ∴OA=6,OB=2 ∴点A、B的坐标分别为(-6,0)、(2,0) ∵BC切⊙O′于B ∴O′B⊥BC ∴∠OBC+∠O′BD=90° ∵∠O′BD+∠BO′D=90° ∴∠OBC=∠BO′D ∵∠BOC=∠BDO′=90° ∴△BOC∽△O′DB ∴ ∴OC== ∴点C的坐标为(0,) 设直线BC的解析式为y=kx+b ∴ 解得 ∴直线BC的解析式为y=-x+; (2)由圆和抛物线的对称性可知MN是抛物线的对称轴, ∴抛物线顶点的横坐标为-2 ∵抛物线的顶点在直线y=-x+上 ∴y=即抛物线的顶点坐标为(-2,) 设抛物线的解析式为y=a(x+6)(x-2) 得=a(-2+6)(-2-2) 解得 ∴抛物线的解析式为y=-(x+6)(x-2)=-x2-x+4; (3)由(2)得抛物线与y轴的交点P的坐标为(0,4), 若四边形DBPQ是平行四边形, 则有BD∥PQ,BD=PQ, ∴点Q的纵坐标为4 ∵BD=4 ∴PQ=4 ∴点Q的横坐标为-4 ∴点Q的坐标为(-4,4) ∴当x=-4时,y=-x2-x+4=-×16++4=4 ∴点Q在抛物线上 ∴在抛物线上存在一点Q(-4,4),使四边形DBPQ为平行四边形.
复制答案
考点分析:
相关试题推荐
(2006•巴中)如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.
(1)求证:DE是圆O的切线;
(2)若∠C=30°,CD=10cm,求圆O的半径.

manfen5.com 满分网 查看答案
(2006•巴中)初三某班的一个综合实验活动小组去A,B两个车站调查前年和去年“春运”期间的客流量情况,如图是调查后小明与其它两位同学进行交流的情景,根据他们的对话,请你分别求出A,B两个车站去年“春运”期间的客流量.
manfen5.com 满分网
查看答案
(2006•巴中)巴中市城市规划期间,欲拆除一建筑物AB,已知距建筑物AB水平距离17m的C处有一堡坎,该堡坎的坡面CD的坡度i=2:1,堡坎高DF为2m,在堡坎D处测得建筑物顶A的仰角为30°,在CE之间是宽4m的行车道.试问:在拆除建筑物时,为确保安全是否将此行车道封上?请说明理由.

manfen5.com 满分网 查看答案
(2006•巴中)巴中市开通4路公共汽车,总站设在一居民小区,为了解决高峰时段从总站出行的人数,随机抽查了10个班次的乘车人数:20,23,26,29,24,28,30,26,21,23.
①计算这10个班次乘车人数的平均数;
②求这10个班次乘车人数的众数和中位数;
③如果在高峰时段从总站共发车40个班次,试估计高峰时段从总站乘车出行的乘客共有多少人?
查看答案
(2006•巴中)如图,梯形ABCD中,AB∥DC,∠B=90°,E为BC上一点,且AE⊥ED.若BC=12,DC=7,BE:EC=1:2,求AB的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.